Characterization of fatty acids and total phenols with antioxidant activity of the peach (prunus persica) seed

Authors

  • Arnulfo Tarón Dunoyer
  • Israel Barros Portnoy
  • Jairo Mercado Camargo

DOI:

https://doi.org/10.24054/limentech.v20i1.1667

Keywords:

Frap activity, orac activity, peach, satured and insatured acid fatty

Abstract

The peach belongs to the Rosaceae family; it is a drupe very much desired for its pleasant taste and nutritional qualities, as in the food industry. The peach seed, like other fruits, is rich in oils, phenolic compounds, as well as having a high content of unsaturated fatty acids, which make it very useful for the food industry. In the present work some quality indices of the oil extracted from the seed were determined. The fatty acid composition was determined by gas chromatography with a mass detector, on an Agilent 7890A brand chromatograph with Agilent MS-5975C mass detector and Agilent 7683-B automatic injector, with HP-5MS capillary column.The antioxidant activity of peach seeds, through the Oracand Frap activity. The results show that the seed oil contains a high percentage of unsaturated fatty acids (91.6±2.65%), in which oleic, linoleic, palmitoleic acid and others stand out. The phenol content found was 93.8±2.24 mg GAE/100g, in relation to the Orac and Frap activity, the seed oil showed.

Downloads

Download data is not yet available.

References

Acevedo Correa, D., Montero Castillo, P., Beltrán Cotta, L., Gallo García, L., & Rodríguez Meza, J. (2017). Efecto de la fritura al vacío sobre la absorción de aceite en empanadas de maíz (Zea mays). Revista @limentech, Ciencia y Tecnología Alimentaria, 15(1), 42-49.

Africano, K., Almanza, P., & Balaguera, H. (2015). Fisiología y bioquímica de la maduración del fruto de durazno (Prunus persica): Una revisión. Revista Colombiana de Ciencias Hortícolas, 9(1), 161-172.

Atolani, O., Adeniyi, O., Kayode, O., & Adeosun, C. (2015). Direct preparation of fatty acid methyl esters and determination of in vitro antioxidant potential of lipid from fresh Sebal causarium seed. Journal of Applied Pharmaceutical Science, 5(3), 24-28.

Benzie, F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 170-76.

Butterfield, D. A., Castegna, A., Drake, J., Scapagnini, G., & Calabrese, V. (2002). Vitamin E and neurodegenerative disorders associated with oxidative stress. Nutritional Neuroscience, 5, 229–39.

Cristo, M., Picanço, D., & Doriane, C. (2017). Genetic analysis identifies the region of origin of smuggled peach palm seeds. Forensic Science International, 273, 15-17.

Ekinci, M., & GUrU, M. (2014). Extraction of oil and B-sitosterol from peach (Prunus persica) seeds using supercritical carbon dioxide. The Journal of Supercritical Fluids, 92, 319-323.

Fang, Y., Yang, S., & Wu, G. (2002). Free radicals, antioxidants and nutrition. Review Nutrition, 18, 872-879.

Firuzi, O., Lacanna, A., Petrucci, R., Marrosu, G., & Saso, L. (2005). Evaluation of the antioxidant activity of flavonoids by “ferric reducing antioxidant power” assay and cyclic voltammetry. Biochimica et Biophysica Acta (BBA) - General Subjects, 1721(1-31), 74-184.

Gao, H., Chai, H., Zhang, Z., & Cheng, N. (2016). Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit. Postharvest Biology and Technology, 118, 103–110.

Gao, H., Lu, Z., Yang, Y., Wang, D., Yang, T., Cao, M., & Cao, W. (2018). Melatonin treatment reduces chilling injury in peach fruit through its regulation of membrane fatty acid contents and phenolic metabolism. Food Chemistry, 245, 659-666.

García, J. De La Rosa, L., Herrera, B., González, A., López, J., González, G., Ruiz, S., & Álvarez, E. (2011). Cuantificación de polifenoles y capacidad antioxidante en duraznos comercializados en Ciudad Juárez, México. Tecnociencia Chihuahua, 5(2), 67-75.

González, E., Marina, M., García, M., Righetti, P., & Fasoli, E. (2016). Identification of plum and peach seed proteins by nLC-MS/MS via combinatorial peptide ligand libraries. Journal of Proteomics, 148, 105-112.

Hashem, M., Alamri, S., Algahtami, M., & Alshehri. (2019). A multiple volatile oil blend prolongs the shelf life of peach fruit and suppresses postharvest spoilage. Scientia Horticulturae, 251, 48-58.

Imeh, U., & Khokhar, S. (2002). Distribution of conjugated and free phenols in fruits: Antioxidant activity and cultivars variations. Journal of Agricultural and Food Chemistry, 50, 6301-6306.

Lafont, J., Páez, M., & Portacio, A. (2011). Extracción y caracterización fisicoquímica del aceite de la semilla (almendra) del marañón (Anacardium occidentale L.). Información tecnológica, 22(1), 51-58.

Liu, H., Cao, J., & Jiang, W. (2015). Evaluation of physiochemical and antioxidant activity changes during fruit on-tree ripening for the potential values of unripe peaches. Scientia Horticulturae, 193, 32-39.

Manzoor, M., Anwar, F., Ashraf, M., & Alkharfy, K. M. (2002). Physico-chemical characteristics of seed oils extracted from different apricot (Prunus armeniaca L.) varieties from Pakistan. Grasas y aceites, 63(2), 193-201.

Mendes Dos Santos, C., Patto de Abreu, C., Mesquita Freire, J., & Duarte Correa, A. (2013). Actividad antioxidante de frutos de cuatro cultivares de pessegueiro. Revista Brasileira de Fruticultura, 35(2), 339-344.

Mercado, J., Tarón, A., & García, L. (2016). The effect of storage temperature and time on total phenolics and enzymatic activity of sapodilla (Achras sapota L.). Revista Facultad Nacional de Agronomía Medellín, 69(2), 7955-7963.

Metcalfe, L. D., Schemitz, A. A., & Pelka, J. P. (1996). Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Analytical Chemistry, 38, 514-515.

Minas, I., Tanou, G., & Molassiotis, A. (2018). Environmental and orchard bases of peach fruit quality. Scientia Horticulturae, 235, 307-322.

Pande, G., & Akoh, C. (2010). Organic acids, antioxidant capacity, phenolic content and lipid characterization of Georgia-grown underutilized fruit crops. Food Chemistry, 120, 1067-1075.

Piva, G., Fracassetti, D., Tirelli, A., Mascheroni, E., Musatti, A., Inglese, P., & Piergio, L. (2017). Evaluation of the antioxidant/antimicrobial performance of Posidonia oceanica in comparison with three commercial natural extracts and as a treatment on fresh-cut peaches (Prunus persica Batsch). Postharvest Biology and Technology, 124, 54-61.

Pryor, W., Cornicelli, J., Devall, L., Tait, B., Witiak, T., & Wu, M. (1993). A rapid screening test to determine the antioxidant potencies of natural and synthetic antioxidants. Journal of Organic Chemistry, 58(13), 3521-3532.

Recio, R., Recio, C., & Pilatowsky, I. (2019). Estudio experimental de la deshidratación de tomate verde (Physalis ixocarpa Brot) utilizando un secador solar de tipo directo. Revista Bistua, 17(1), 76-86. https://doi.org/10.24054/01204211.v1.n1.2019.3136

Rodríguez, S., Pérez, I., & Reynoso, R. (2018). Polyphenol-rich peach (Prunus persica L.) by-product exerts a greater beneficial effect than dietary fiber-rich by-product on insulin resistance and hepatic steatosis in obese rats. Journal of Functional Foods, 45, 58-66.

Rodríguez, S. P., & Blandón, C. N. (2019). Evaluación del efecto de la aplicación de pre-tratamientos con ultrasonido sobre el nivel de extracción de aceite de la semilla de árbol neem (Azadirachta indica A. Juss.). Revista @limentech, Ciencia y Tecnología Alimentaria, 17(1), 60-79.

Szymajda, M., Sitarek, M., Pruski, K., & Zurawicz, E. (2019). A potential of new peach (Prunus persica L.) seed tree genotypes for the production of generative rootstocks. Scientia Horticulturae, 256, Article 108618.

Vasquez, L., & Garcia, C. (2015). Revalorization of a peach (Prunus persica (L.) Batsch) byproduct: Extraction and characterization of ACE-inhibitory peptides from peach stones. Journal of Functional Foods, 18(Part A), 137-146.

Wechsler, A., Molina, J., Cayumil, R., Núñez, M., & Ballerini-Arroyo, A. (2019). Some properties of composite panels manufactured from peach (Prunus persica) pits and polypropylene. Composites Part B: Engineering, 175, Article 107152.

Wei, C. H., Zhang, Y., He, L., Cheng, J., Li, J., Tao, W., Mao, G., Zhang, H., Linhardt, R. J., Ye, X., & Chen, S. (2019). Structural characterization and anti-proliferative activities of partially degraded polysaccharides from peach gum. Carbohydrate Polymers, 203(1), 193-202.

Zhu, W., Liu, J., Ye, J., & Li, G. (2017). Effects of phytotoxic extracts from peach root bark and benzoic acid on peach seedlings growth, photosynthesis, antioxidance, and ultrastructure properties. Scientia Horticulturae, 215, 49-58.

Published

2022-10-24 — Updated on 2022-07-30

Versions

How to Cite

Tarón Dunoyer, A., Barros Portnoy, I., & Mercado Camargo , J. (2022). Characterization of fatty acids and total phenols with antioxidant activity of the peach (prunus persica) seed. @limentech, Ciencia Y Tecnología Alimentaria, 20(1), 77–91. https://doi.org/10.24054/limentech.v20i1.1667 (Original work published October 24, 2022)

Issue

Section

Artículos