Morello cherry (pronus ceresus) as a source of bioactive molecules
DOI:
https://doi.org/10.24054/limentech.v21i1.2365Keywords:
Actividad biológica, frutas, guinda metabolitos bioactivosAbstract
Nature provides us with an immense variety of fruit-bearing plant species such as cherry (Prunus cerasus) with intriguing biological properties that contribute to an important source of new bioactive molecules. These compounds, besides being less toxic, have the potential to replace synthetic chemicals that are harmful to the environment. Currently, there are several publications linking cherries to biological activity, based on searches conducted across different databases up to August 2022. This underscores the significant utility of this fruit as a primary source of bioactive metabolites, which can serve as active ingredients in various products beneficial to humanity.
Downloads
References
A. Cano, M.B. Arnao. "Actividad Antioxidante Hidrofílica y Lipofílica y contenido en vitamina C de zumos de Naranja comerciales; Relación con sus características organolépticas". (2004). "Ciencia y tecnología Alimentaria". Sociedad Mexicana de Nutrición y Tecnología de Alimentos, Reynosa, México. vol 4(3): 185-189.
A. Gutiérrez & L. Ledesma. "Capacidad antioxidante total de alimentos convencionales y regionales de Chiapas, México". (2007). Revista Cubana de la Salud Pública, La Habana, Cuba.
D.O. Kim, H.J. Heo, Y.J. Kim, H.S. Yang & C.Y. Lee. Sweet and sour cherry phenolics and their protective effects on neuronal cells. (2005). Journal of Agricultural and Food Chemistry, vol 53(26): 9921–9927.
D.J.S. Price. Little Science, big science and beyond. (1986).
F. Blando, C. Gerardi & I. Nicoletti. Sour cherry (Prunus cerasus L.) anthocyanins as ingredients for functional foods. (2004). BioMed Research International, vol (5): 253–258.
F.A. Saleh, N. El-Darra, K. Raafat. Hypoglycemic effects of Prunus cerasus L. pulp and seed extracts on Alloxan-Induced Diabetic Mice with histopathological evaluation. (2017). Biomedicine & Pharmacotherapy, vol (88): 870–877.
G. Villarroel, L. Artica. Determinación de la actividad antioxidante de la guinda (Prunus capuli). (2008). Universidad Nacional Del Centro Del Perú, Huancayo, Perú.
G.R. Sadani, G.D. Nadkarni. Role of tissue antioxidant defence in thyroid cancers. (1996). Cancer Letters, vol 109(1-2): 231-235.
G. Toydemir, E. Capanoglu, M.V. Gomez, R.C.H. de Vos, D. Boyacioglu, R.D. Hall, J. Beekwilder. Industrial processing effects on phenolic compounds in sour cherry (Prunus cerasus L.) fruit. (2013). Food Research International, vol (53): 218–225.
J. Contreras, L. Calderón, E. Guerra, B. García. Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. (2010). Food Research International, In Press, Corrected Proof.
J. Scalzo, A. Politi, N. Pellegrini, B. Mezzetti, M. Battino. Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutrition. (2005). vol 21(2): 207-213.
S. Wang, J.P. Melnyk, R. Tsao, M.F. Marcone. How natural dietary antioxidants in fruits, vegetables and legumes promote vascular health. (2011). Food Research International, vol 44(1): 14-22.
Z. Veres, I. Holb, J. Nyéki, Z. Szabó, J. Remenyik & M.G. Fári. High antioxidant – and anthocyanin contents of sour cherry cultivars may benefit the human health: international and Hungarian achievements on phytochemicals. (2006). International Journal of Horticultural Science, vol 12(3): 45–47.
Downloads
Published
Versions
- 2023-07-28 (5)
- 2023-07-28 (4)
- 2023-07-19 (3)
- 2023-05-02 (2)
- 2023-04-28 (1)