Pretratamiento con campo magnético en la fermentación de emulsiones de carne de cerdo
DOI:
https://doi.org/10.24054/limentech.v21i1.2367Palavras-chave:
Carne, microbiota, maduración, proteína, tecnologíaResumo
La demanda de alimentos inocuos, mínimamente procesados y saludables por parte de los consumidores ha generado la necesidad de desarrollar nuevas tecnologías para cubrir dichas necesidades, estas deben ser sostenibles con el medio ambiente, por lo tanto, el objetivo de este trabajo fue evaluar el efecto del pretratamiento con Campo Magnético Estático- CME en la fermentación de emulsiones de carne de cerdo. Se preparó una emulsión %P/P con 15,03% proteína, 24,64% grasa, 57,64% agua, 1,90% sal, 0,02% nitrito, 0,1% cultivo y 0,67% lactosa. Se sometió a tratamiento con CME de 4,5mT durante 0, 3, 5 y 10 minutos. Posteriormente las muestras
fueron almacenadas durante 20 días a temperatura ambiente. Se evaluó el pH, color, estabilidad y humedad durante los días 1, 4, 8, 12, 16 y 20 y la microbiota se analizó el día 1 y 20. Se encontró que la emulsión es estable y su humedad no varía. El pH no varía con el pretratamiento, pero sí disminuye con el tiempo de almacenamiento. La actividad microbiana de Lactobacillus bulgaricus se ve afectada por el pretratamiento, pero exhibe una recuperación a los 4 días de almacenamiento. La luminosidad disminuye con el pretratamiento este efecto se mantiene hasta el día 4. En el parámetro a* del color el pretratamiento causa aumento en la escala, este cambio resulta proporcional al tiempo de tratamiento. El parámetro b* presenta disminución hasta el día 8 y posteriormente exhibe el comportamiento contrario. Estos cambios están relacionados con el tiempo del tratamiento. Se presentan reducciones de los coliformes totales a 200UFC/g y coliformes fecales a <3UFC/g en las muestras, por efecto de las condiciones de almacenamiento.
Downloads
Referências
A.O.A.C. 1990. Official methods of analysis of the association of official analytical chemists. Analytica Chimica Acta (International). 242(1):302. https://doi.org/10.1016/0003-2670(91)87088-O
Ángel-Rendón, S.V., Filomena-Ambrosio, A., Hernández-Carrión, M., Llorca, E., Hernando, I., Quiles, A., Sotelo-Díaz, I. 2020. Pork meat prepared by different cooking methods. A microstructural, sensorial and physicochemical approach. Meat Science. 163:108089. https://doi.org/10.1016/j.meatsci.2020.108089
Bekhit, A., Suwandy, V., Carne, A., van de Ven, R., Hopkins, D. 2016. Effect of repeated pulsed electric field treatment on the quality of hot-boned beef loins and topsides. Meat Science. 111:139-146. https://doi.org/10.1016/j.meatsci.2015.09.001
Câmara, A., Okuro, P., Da Cunha, R., Herrero, A.M., Ruiz-Capillas, C., Pollonio, M. 2020. Chia (Salvia hispanica L.) mucilage as a new fat substitute in emulsified meat products: Technological, physicochemical, and rheological characterization. LWT. 125:109193. https://doi.org/10.1016/j.lwt.2020.109193
Fuentes, L., Acevedo, D., Gélvez, V.M. 2016. Efecto del ultrasonido y campos magnéticos en la carne de lomo de atún (Thunnus albacares). Información Tecnológica (Colombia). 27(2):21-30. https://doi.org/10.4067/S0718-07642016000200004
Ge, Q., Pei, H., Liu, R., Chen, L., Gao, X., Gu, Y., Hou, Q., Yin, Y., Yu, H., Wu, M., Zhang, W., Zhou, G. 2019. Effects of Lactobacillus plantarum NJAU-01 from Jinhua ham on the quality of dry-cured fermented sausage. LWT. 101:513-518. https://doi.org/10.1016/j.lwt.2018.11.081
Gómez Patiño, J., Salazar Cano, J.A., Álvarez Montes, J., Flórez Restrepo, C. 2013. Efecto de la concentración de cultivos iniciadores y dextrosa sobre la calidad de la maduración y vida útil sensorial del pepperoni. Rev. Lasallista de Investigación (Colombia). 10(1):101-111. https://dialnet.unirioja.es/servlet/articulo?codigo=5021867
Gonzalez-Rivas, P.A., Chauhan, S.S., Ha, M., Fegan, N., Dunshea, F.R., Warner, R.D. 2020. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Science. 162:108025. https://doi.org/10.1016/j.meatsci.2019.108025
Guo, J., Zhou, Y., Yang, K., Yin, X., Ma, J., Li, Z., Sun, W., Han, M. 2019. Effect of low-frequency magnetic field on the gel properties of pork myofibrillar proteins. Food Chemistry. 274:775-781. https://doi.org/10.1016/j.foodchem.2018.09.028
Han, Z., Cai, M., Cheng, J.-H., Sun, D.-W. 2018. Effects of electric fields and electromagnetic wave on food protein structure and functionality: A review. Trends in Food Science & Technology. 75:1-9. https://doi.org/10.1016/j.tifs.2018.02.017
Hernández-Hernández, H.M., Moreno-Vilet, L., Villanueva-Rodríguez, S.J. 2019. Current status of emerging food processing technologies in Latin America: Novel non-thermal processing. Innovative Food Science & Emerging Technologies. 58:102233. https://doi.org/10.1016/j.ifset.2019.102233
Hussain, M.S., Dastgeer, G., Afzal, A.M., Hussain, S., Kanwar, R.R. 2020. Eco-friendly magnetic field treatment to enhance wheat yield and seed germination growth. Environmental Nanotechnology, Monitoring & Management. 14:100299. https://doi.org/10.1016/j.enmm.2020.100299
Inguglia, E.S., Zhang, Z., Tiwari, B.K., Kerry, J.P., Burgess, C.M. 2017. Salt reduction strategies in processed meat products – A review. Trends in Food Science & Technology. 59:70-78. https://doi.org/10.1016/j.tifs.2016.10.016
Ji, W., Huang, H., Deng, A., Pan, C. 2009. Effects of static magnetic fields on Escherichia coli. Micron. 40(8):894-898. https://doi.org/10.1016/j.micron.2009.05.010
Kim, T.-K., Yong, H.-I., Jung, S., Kim, Y.-B., Choi, Y.-S. 2020. Effects of replacing pork fat with grape seed oil and gelatine/alginate for meat emulsions. Meat Science. 163:108079. https://doi.org/10.1016/j.meatsci.2020.108079
Lesiow, T., Rentfrow, G.K., Xiong, Y.L. 2017. Polyphosphate and myofibrillar protein extract promote transglutaminase-mediated enhancements of rheological and textural properties of PSE pork meat batters. Meat Science. 128:40-46. https://doi.org/10.1016/j.meatsci.2017.02.002
Li, X., Farid, M. 2016. A review on recent development in non-conventional food sterilization technologies. Journal of Food Engineering. 182:33-45. https://doi.org/10.1016/j.jfoodeng.2016.02.026
McAuley, C.M., Singh, T.K., Haro-Maza, J.F., Williams, R., Buckow, R. 2016. Microbiological and physicochemical stability of raw, pasteurised or pulsed electric field-treated milk. Innovative Food Science & Emerging Technologies. 38:365-373. https://doi.org/10.1016/j.ifset.2016.09.030
Mirmoghtadaie, L., Shojaee Aliabadi, S., Hosseini, S.M. 2016. Recent approaches in physical modification of protein functionality. Food Chemistry. 199:619-627. https://doi.org/10.1016/j.foodchem.2015.12.067
Morales-de la Peña, M., Welti-Chanes, J., Martín-Belloso, O. 2019. Novel technologies to improve food safety and quality. Current Opinion in Food Science. 30:1-7. https://doi.org/10.1016/j.cofs.2018.10.009
Moya, Y., Beldarraín, T., Santos, R., Guerra, M.A., Cepero, Y., Bruselas, A., Frómeta, Z., Vergara, N. 2017. Cambios en la microbiota durante la maduración de un chorizo. Ciencia y Tecnología de Alimentos (Colombia). 21(2):664-664. https://doi.org/ISBN 0864-4497
Niakousari, M., Hashemi Gahruie, H., Razmjooei, M., Roohinejad, S., Greiner, R. 2018. Chapter 5 - Effects of innovative processing technologies on microbial targets based on food categories: Comparing traditional and emerging technologies for food preservation. En: Barba, F.J., Sant’Ana, A.S., Orlien, V., Koubaa, M. (eds). Emerging Technologies for Food. Ed. Academic Press. p.133-185. https://doi.org/10.1016/B978-0-12-811031-7.00005-4
Park, B., Kim, H., Choi, B., Lee, H., Choi, W., Cho, S. 2015. Use of electron beam irradiation for improvement of microbial quality of whole chicken meat and its effect on the volatile compounds and odor. Radiation Physics and Chemistry. 106:60-65. https://doi.org/10.1016/j.radphyschem.2014.05.032
Pereira, S.A., Rodrigues, J.B., Lima, S.G., de Melo Silva, L.R., Ramos, F., Assis, D.C.S., Ramos, E.M. 2020. Functional properties of hydrolysates from porcine collagen extracted with pepsin and pancreatin and their application in beef patties. Meat Science. 161:107972. https://doi.org/10.1016/j.meatsci.2019.107972
Ramos-Parra, P.A., García, J.A., Garzón-Rico, S. 2019. Evaluación de propiedades de calidad del pepperoni bajo tres condiciones de almacenamiento. Ingeniería e Investigación (Colombia). 39(2):55-62. https://doi.org/10.15446/ing.investig.v39n2.71718
Sanjurjo, K., Pathiyil, V., Covington, J., Frost, M. 2020. Influence of novel chemical and physical interventions on Pseudomonas aeruginosa biofilms. Biofilms and Microbiomes. 6(1):1-15. https://doi.org/10.1038/s41522-019-0116-y
Schilling, M.W., Battula, V., Loar, R.E., Jackson, V., Kin, S., Corzo, A. 2010. Dietary inclusion level effects of distillers dried grains with solubles on broiler meat quality. Poultry Science. 89(4):752-760. https://doi.org/10.3382/ps.2009-00361
Silva, P., Deliza, R., Lima, T., Wolf, G., Cunha, L. 2017. Effect of health and nutrition claims on consumer acceptance of sugar reduction: Case study with probiotic yogurt. Food Research International. 100(3):1-10. https://doi.org/10.1016/j.foodres.2017.03.017
Sloan, D. 2012. Top 10 food trends. Food Technology. 66(4):24-41. https://www.ift.org/news-and-publications/food-technology-magazine/issues/2012/april/columns/consumer-trends_top-10-food-trends
Thakur, D., Patil, M., Patil, S., Prabhakar, A. 2018. Effect of UV irradiation on the physico-chemical and microbiological properties of kiwifruit juice. Journal of Food Science and Technology. 55:1-9. https://doi.org/10.1007/s13197-018-3422-y
Xue, Y., Xie, Y., Zhang, W., Mitomo, H., Nagaoka, K., Yokoyama, K. 2020. Effect of deoxygenation process on the quality of pre-cooked beef patties. Meat Science. 161:107963. https://doi.org/10.1016/j.meatsci.2019.107963
Downloads
Publicado
Versões
- 2023-07-28 (5)
- 2023-07-28 (4)
- 2023-07-28 (3)
- 2023-07-19 (2)
- 2023-05-02 (1)