Analysis of geometric design criteria for the inlet channel and basin for gravity vortex turbines

Authors

DOI:

https://doi.org/10.24054/rcta.v1i47.4307

Keywords:

Energy, channel, basin, turbine, vortex

Abstract

This article presents a review of the most relevant studies on inlet channels and basins used in gravitational vortex turbines, with the aim of identifying the geometric and operational parameters that control the formation, stability, and efficiency of the vortex. Cylindrical and conical configurations are analyzed, as well as variations in the geometry and inclination of the inlet channel, integrating experimental and numerical results to compare their influence on hydraulic performance. These findings allow the recognition of the most efficient design trends and the identification of innovative proposals that seek to optimize vortex generation and the overall performance of the turbine.

Downloads

Download data is not yet available.

References

A Reyes, M P Castañeda, “Colombia necesita avanzar hacia una diversificación de fuentes de energía”, BBVA Res., vol. 33, no. 2, abr. 2024, art. No. 034251, doi: 10.1109.BBVA.034251.

S Álvarez, “El Desafío Energético de Colombia y el Rol Crucial de las PCH”, GSV Ingeniería, vol. 8, no. 2, may. 2024, art. No. 002921, doi: 10.1109.GSV.002921.

DF Ayala, JG Criollo, “Implementación de una turbina hidráulica de vórtice de agua gravitacional,” Rev. UIS Ingenierías, vol. 22, no. 2, jul. 2023, art. No. 13678, doi: 10.1109.UIS.13678.

L. Velásquez, E. Chica, J. Posada, “Implementación de una turbina hidráulica de vórtice de agua gravitacional en Colombia: potencial hidroeléctrico y perspectivas,” Rev. UIS Ingenierías, vol. 22, no. 3, pp. 39–54, jul. 2023, doi: 10.18273/revuin.v22n3-2023004.

M. Ayala, H. Benavides, C. Riba, “Sistema de generación energía sumergible basado en un vórtice gravitacional con sifón para comunidades aisladas”, Rev. Técnica “energía”, no. 12, ene. 2016, pp. 304–312, doi: 10.1109.CENACE.0055.

D. Fernández, J. Gómez, “Implementación de una turbina hidráulica de vórtice de agua,” Rev. UIS Ingenierías, vol. 22, no. 2, jul. 2023, art. No. 13678, doi: 10.1109.UIS.13678.

L. Velásquez, J. P. Rengifo, J. Urrego, A. Rubio-Clemente, E. Chica, “Experimental Assessment of Hydrodynamic Behavior in a Gravitational Vortex Turbine with Different Inlet Channel and Discharge Basin Configurations”, Energies, vol. 17, no. 22, Nov. 2024, art. 5773, doi: 10.3390/en17225773.

L. Velásquez, A. Posada, E. Chica, “Optimization of the basin and inlet channel of a gravitational water vortex hydraulic turbine using the response surface methodology”, Renewable Energy, vol. 187, 2022, pp. 508-521.

L. I. Velásquez García, A. Rubio-Clemente, E. Chica, “Numerical analysis of the inlet channel and basin geometries for vortex generation in a gravitational water vortex power plant”, Galería TDEA, 2020.

V. J. Alzamora Guzmán, J. A. Glasscock, “Analytical solution for a strong free-surface water vortex describing flow in a full-scale gravitational vortex hydropower system”, Water Sci. Eng., vol. 14, no. 4, Mar. 2021, art. no. 72, doi: 10.1016/j.wse.2021.03.004.

Abdul S. Saleem, Taqi A. Cheema, Rizwan Ullah, Sarvat M. Ahmad, Javed A. Chattha, Bilal Akbar, Cheol W. Park, “Parametric study of single-stage gravitational water vortex turbine with cylindrical basin”, Energy, vol. 200, 2020, art. 117464, doi: 10.1016/j.energy.2020.117464.

E. Septyaningrum, R. Hantoro, N. K. Mouti, W. R. Rahayu, S. Sutardi, “Gravitational Vortex Water Turbine (GVWT) conical basin design: the effects of cone angle and outlet diameter on vortex characteristics”, J. Mech. Eng. (JMechE), vol. 21, no. 1, ene. 2024, pp. 177–198, doi: 10.24191/jmeche.v21i1.25366.

N. H. Khan, T. A. Cheema, J. A. Chattha, C. W. Park, “Effective basin–blade configurations of a gravitational water vortex turbine for microhydropower generation”, J. Energy Eng., vol. 144, no. 4, Abr. 2018, art. 04018042, doi: 10.1061/(ASCE)EY.1943-7897.0000558.

S. R. Sreerag, C. K. Raveendran, B. S. Jinshah, “Effect of outlet diameter on the performance of gravitational vortex turbine with conical basin”, J. Scientific & Engineering Research, vol. 7, no. 4, 2016, pp. 457–463.

R. Gómez, L. Velásquez, A. Rubio-Clemente, E. Chica, “Design Optimization of an Inclined Inlet Channel, an Archimedean Spiral Basin, and a Discharge Cone in a Gravitational Vortex Turbine”, Processes, vol. 13, no. 5, May 2025, art. 1533, doi: 10.3390/pr13051533.

R. Dhakal, T. R. Bajracharya, S. R. Shakya, B. Kumal, S. Williamson, K. Khanal, S. Gautam, D. P. Ghale, “Computational and Experimental Investigation of Runner for Gravitational Water Vortex Power Plant”, en Proc. 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), San Diego, 2017, pp. 365–373, doi: 10.1109/ICRERA.2017.8191087.

T. A. Cheema, N. H. Khan, C.-W. Park, “CFD-based performance evaluation of a gravitational water vortex turbine with optimized basin geometry”, J. Mech. Sci. Technol., vol. 33, no. 4, Apr. 2019, pp. 1771–1782, doi: 10.1007/s12206-019-0329-0.

D. C. Wilcox, “Reassessment of the scale-determining equation for advanced turbulence models”, AIAA J., vol. 26, no. 11, Nov. 1988, pp. 1299–1310, doi: 10.2514/3.10041.

M. M. Rahman, J. Jian-Hong, F. Mohd Tamiri, “Effects of Inlet Flow Rate and Penstock’s Geometry on the Performance of Gravitational Water Vortex Power Plant”, Proc. Int. Conf. Ind. Eng. Oper. Manag. (IEOM), 2018.

S. N. Havaldar, P. A. Gadekar, S. M. Baviskar, N. M. Jadhav, S. H. Inamdar, “Analyzing Geometries for Inlet Flow Channels to Gravitational Water Vortex Chamber”, Int. J. Res. Eng. App. & Manag. (IJREAM), Special Issue AMET-2019.

Thapa, D., Mishra, A., & Sarath, K. S., “Effect of Inlet Geometry in the Quality of Vortex Formed Using Vortex Flow Channel”, Int. J. Mech. Eng. Technol. (IJMET), vol. 8, no. 5, 2017, pp. 515–524.

A. Sharif, C. Siddiqi, et al., “Enhancing the performance of Gravitational Water Vortex Turbine”, Journal of Technology Innovations & Energy, 2023, donde también se discuten efectos geométricos de la cuenca.

J. A. Chattha, T. A. Cheema, N. H. Khan, “Numerical investigation of basin geometries for vortex generation in a gravitational water vortex power plant”, Proc. 2017 8th International Renewable Energy Congress (IREC), IEEE, 2017, pp. 1-5, doi: 10.1109/IREC.2017.7926028.

S. Dhakal, A. B. Timilsina, R. Dhakal, D. Fuyal, T. R. Bajracharya, H. P. Pandit, “Comparison of cylindrical and conical basins with optimum position of runner: Gravitational water vortex power plant”, Renew. Sustain. Energy Rev., vol. 48, pp. 662-669, 2015, doi: 10.1016/j.rser.2015.04.030.

A. R. Sánchez, J. A. Sierra Del Rio, A. J. Guevara-Muñoz, J. A. Posada, “Numerical and Experimental Evaluation of Concave and Convex Designs for Gravitational Water Vortex Turbine”, J. Adv. Res. Fluid Mech. Thermal Sci., vol. 64, no. 1, 2019, pp. 160-172, doi: 10.37934/arfmts.64.1.160172.

L. Velásquez, A. Posada, & E. Chica, “Surrogate modeling method for multi-objective optimization of the inlet channel and the basin of a gravitational water vortex hydraulic turbine,” Appl. Energy, vol. 330, 2023, art. 120357, doi: 10.1016/j.apenergy.2022.120357.

L. Velásquez, A. Posada, E. Chica, “Optimization of the basin and inlet channel of a gravitational water vortex hydraulic turbine using the response surface methodology”, Renew. Energy, vol. 187, no. (–), Apr. 2022, pp. 508-521, doi: 10.1016/j.renene.2022.01.113.

E. D. Madrid, J. C. Serrano, E. G. Flórez, “Optimization for the inlet channel and basin of a gravitational vortex turbine through the maximization of circulation”, RE&PQJ, vol. 22, no. 5, Ago. 2024, art. 4021, doi: 10.52152/4021.

Published

2026-01-01

How to Cite

[1]
“Analysis of geometric design criteria for the inlet channel and basin for gravity vortex turbines”, RCTA, vol. 1, no. 47, pp. 116–124, Jan. 2026, doi: 10.24054/rcta.v1i47.4307.

Similar Articles

1-10 of 83

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)