Modelamiento y evaluación de una contracción de un túnel de viento súbsonico
DOI:
https://doi.org/10.24054/rcta.vi.159Palabras clave:
Contracción, capa límite, uniformidad, coeficiente de presiónResumen
Este trabajo presenta el modelamiento y evaluación de una contracción para un túnel de viento subsónico. Las simulaciones se realizaron a tres diferentes formas de contracción comúnmente utilizadas en túneles de viento, lo cual permitió a través de software tipo CAE analizar la uniformidad del fluido, turbulencia y el coeficiente de presión de a lo largo de la contracción. Estas simulaciones demuestran que la contracción propuestas por (Whitehead, Wu, & Waters, 1951) presenta un mejor desempeño en cuanto a las variables estudiadas. Con el objetivo de mejorar la uniformidad del fluido y disminuir su turbulencia en la salida de la contracción, fue utilizado un trip en la región de entrada de la contracción; lo cual mejoró en un 92,4% el coeficiente de presión y la intensidad de turbulencia.
Descargas
Citas
Álvarez Castañeda, W., Alvarado Fajardo, A., & Cardona, C. (2014). Evaluación del potencial eólico en el Alto de Soracá - Tunja. Revista Colombiana de Tecnologías de avanzada, 2(24), 90-92.
Bell, J. H., & Mehta, R. D. (1988). Contraction design for small low-speed wind tunnels.
Cengel, Y. A., & Cimbala, J. M. (2012). Mecánica de fluidos. Fundamentos y Aplicaciones. (S. A. d. C. V. McGraw-Hill/Interamericana editores Ed. segunda edicion ed.).
Dehghan Manshadi, M., Mirzaei, M., Soltani, M., & Ghorbanian, K. (2008). Control of pressure gradient in the contraction of a wind tunnel. World Academy of Science, Eng. and Tech, 40, 261-266.
Doolan, C. J., & Morgans, R. C. (2007). Numerical evaluation and optimization of low speed wind tunnel contractions. Paper presented at the 18th AIAA CFD Conference proceedings.
Ghorbanian, K., Soltani, M. R., & Manshadi, M. D. (2011). Experimental investigation on turbulence intensity reduction in subsonic wind tunnels. Aerospace science and Technology, 15(2), 137-147.
Hjärne, J., Löfdahl, L., & Larsson, J. (2003). DESIGN OF A MODERN TEST-FACILITY FOR LPT/OGV FLOWS. ASME Turbo Expo 2003, collocated with the 2003 Inter-national Joint Power Generation Conference, 137-145.
Leal González, F. A., & Herández Cely, M. M. (2013). Estudio del potencial eólico y solar de cúcuta, norte de santander. Revista Colombiana de Tecnologías de Avanzada, 2(22), 27-33.
Leal González, F. A., & Herández Cely, M. M. (2013). Estudio del potencial eólico y solar de cúcuta, norte de santander. Revista Colombiana de Tecnologías de Avanzada, 2(22), 27-33.
Kolmogorov, A. N. (1941). The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Paper presented at the Dokl. Akad. Nauk SSSR.
Leifsson, L., & Koziel, S. (2015). Simulation-driven design of low-speed wind tunnel contraction. Journal of Computational Science, 7, 1-12.
Lindgren, B., & Johansson, A. V. (2002). Design and evaluation of a low-speed wind-tunnel with expanding corners. Flow Facility Design and Experimental Studies of Wall-Bounded Turbulent Shear-Flows, 63.
Mathew, J., Bahr, C., Carroll, B., Sheplak, M., & Cattafesta, L. (2006). Design, fabrication, and characterization of an anechoic wind tunnel facility. University of Florida,
Menter, F. R., Kuntz, M., & Langtry, R. (2003). Ten years of industrial experience with the SST turbulence model. Turbulence, heat and mass transfer, 4(1), 625-632.
Morel, T. (1975). Comprehensive design of axisymmetric wind tunnel contractions. Journal of Fluids Engineering, 97(2), 225-233.
Morel, T. (1977). Design of two-dimensional wind tunnel contractions. Journal of Fluids Engineering, 99(2), 371-377.
Rona, A., & Soueid, H. (2010). Boundary layer trips for low Reynolds number wind tunnel tests.
Slangen, R. (2009). Experimental investigation of artificial boundary layer transition. Master of Science Thesis, TU Delft, vol, 82.
Watmuff, J. (1986). Wind tunnel contraction design. Paper presented at the Proceedings of 9th Australian Fluid Mechanics Conference.
Whitehead, L., Wu, L., & Waters, M. (1951). Contracting ducts of finite length. The Aeronautical Quarterly, 2(4), 254-271.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.