Modeling The Growth Of Spoilage Bacteria In Costeño Cheese Subjected To Thermosonication
DOI:
https://doi.org/10.24054/limentech.v21i2.2606Keywords:
active film, cheese, secondary model, aqueous extract, predictive microbiologyAbstract
Se investigó el efecto de la termosonación a tres temperaturas en el crecimiento de bacterias alterantes en el queso Costeño. Se ajustaron recuentos bacterianos a modelos primarios como Gompertz, Huang y Buchanan. Se utilizaron ecuaciones polinómicas para describir el efecto de la termosonación en la velocidad de crecimiento específico. El error cuadrático medio (ECM), el factor de sesgo (Bf) y el factor de precisión (Af) se emplearon para evaluar el rendimiento de los modelos predictivos. El tratamiento más severo aplicado en este estudio fue la termosonación a 40 kHz a 60°C, lo que resultó en una fase de latencia aumentada y una disminución de la velocidad de crecimiento especifica de las bacterias alterantes analizadas. Los valores de la velocidad de crecieminto obtenidos de los modelos de Gompertz y Buchanan se utilizaron para construir ecuaciones polinómicas. Estos modelos secundarios tenían factores de sesgo y factores de precisión cercanos a uno, lo que indica que los modelos polinómicos fueron capaces de describir el crecimiento microbiano en el queso. Estos resultados podrían contribuir a iniciar la aplicación de la termosonación para prolongar la vida útil del queso Costeño.
Downloads
References
Abou-zeid, K.A., Oscar, T.P., Schwarz, J.G., Hashem, F.M., Whiting, R.C., & Yoon, K.S. (2009). Development and validation of a predictive model for Listeria monocytogenes Scott A as a function of temperature, pH and commercial mixture of potassium lactate and sodium diacetate. J. Microbiol and Biotechnol., 19, 718–726.
Acevedo D., Jaimes J., Espitia C. (2014). Efecto de la Adición de Lactosuero al Queso Costeño Amasado. Inf Tecnol., 26(2), 11-16.
Antunes-Rohling, A., Artaiza, A., Calero, S., Halaihel, N., Guillén S., Raso, J., Álvarez, I., Cebrián G. (2019). Modelling microbial growth in modified-atmosphere-packed hake (Merluccius merluccius) fillets stored at different temperatures. Food Res. Int., 122, 506–516
Cayre, M. E., Garro, O., & Vignolo, G. (2005). Effect of storage temperature and gas permeability of packaging film on the growth of lactic acid bacteria and Brochothrix thermosphacta in cooked meat emulsions. Food Microbiol., 22(6), 505–512.
Chen, R., Skeens. J.,Orsi, R., Wiedmann, M., Guariglia, V. (2020). Predicted and observed growth of Listeria monocytogenes in seafood challenge tests and in naturally contaminated cold smoked salmon. International Journal of Food Microbiology, 233, 108793.
Gao, S., Lewis, G., Ashokkumar, M., Hemar, Y. (2014). Inactivation of microorganisms by low-frequency high-power ultrasound: 1. Effect of growth phase and capsule properties of the bacteria. Ultrason. Sonochem., 21, 446–453.
Cubero, S., Possas, A., Valero, A., Bolívar, A., Posada, G., García, R., Zurera, G., Pérez, F. (2019). MicroHibro’: A software tool for predictive microbiology and microbial risk assessment in foods. International Journal of Food Microbiology, 290(2), 229-236.
Geitenes, S., Oliveira, M. F. B., Kalschne, D. L., & Sarmento, C. M. P. (2013). Modelagem do crescimento de bactérias láticas e análise microbiológica em apresuntado e presunto cozido fatiados e embalados à vácuo. Rev. Ciências Exat. Nat., 15(1), 113–133.
González Cuello, R., Morón Alcázar, L., Pedraza Galván, K. (2020). Modeling the effect of storage temperature on the growth rate of Lactobacillus delbrueckii in Colombian coastal cheese. Syl. journal. 164 (3), 293 – 303.
Gutiérrez C., Quintero P., Burbano I., Simancas R. (2017). Artisan Cheese Dairy Model under a Distinctive Sign in the Colombian Caribbean: The Atlantic Case. Rev L de Invest., 14(1), 72-83.
Huang, G., Chen, S., Dai, C., Sun, L., Sun, W., Tang, Y., Ma, H. (2017). Effects of ultrasound on microbial growth and enzyme activity. Ultrasonics Sonoch., 37, 144–149.
Jalilzadeh, A., Hesari, J., Peighambardoust, S., Javidipour, I. (2018). The effect of ultrasound treatment on microbial and physicochemical properties of Iranian ultrafiltered feta-type cheese. J. Dairy Sci., 101, 5809–5820.
Jeanson, S., Floury, J., Gagnaire, V., Lortal, S., Thierry, A., (2015). Bacterial colonies in solid media and foods: a review on their growth and interactions with the microenvironment. Front. Microbiol. 6.
Kalschne, D., Geitenes, S., Veit, M., Sarmento, C., Colla, E. (2014). Growth inhibition of lactic acid bacteria in ham by nisin: A model approach. Meat Sci., 98, 744–752.
Kon, T., Nakakura, S., Mitsubayashi, K. (2005). Intracellular analysis of Saccharomyces cerevisiae using CLSM after ultrasonic treatments, Nanomed. Nanotechnol. Biol. Med. 1, 159–163.
López, F.N.A., Quintana, M.C.D., Fernández, A.G. (2006). The use of a D-optimal design to model the effects of temperature, NaCl, type and acid concentration on Lactobacillus pentosus IGLAC01. J. Appl. Bacteriol., 101, 913–926.
Mani, E., Ramírez, N., Jiménez, M., López, A. (2022). Application of thermo-ultrasonic treatments for the inactivation of osmotolerant yeasts suspended in media with reduced water activity. Chemical Engineering and Processing - Process Intensification, 179,109094.
Palabiyik I., Rasouli P., Konar N., Said T. (2018). Novel Delivering Agent for Bioactive Compounds: Chewing Gum Bioactive Molecules in Food Springer, pp. 1- 39.
Possas, A., Pérez, F., Valero, A., García, R. (2017). Modelling the inactivation of Listeria monocytogenes by high hydrostatic pressure processing in foods: A review. Trends in Food Science and Technology, 45-55..
Ruiz-Capillas, C., Carballo, J., & Colmenero, F. J. (2007). Biogenic amines in pressurized vacuum-packaged cooked sliced ham under different chilled storage conditions. Meat Sci., 75, 397–405.
Salakkam, A., Phukoetphim, N., Laopaiboon, P., Laopaiboon, L. (2023). Mathematical modeling of bioethanol production from sweet sorghum juice under high gravity fermentation: Applicability of Monod-based, logistic, modified Gompertz and Weibull models. Electronic Journal of Biotechnology, 64, 18-26.
Salakov, N.S. (2023). Kinetics of microbial processes: General principles. Encyclopedia of Soils in the Environment. Second Edition, 1, 168-165.
Shen Cai, J., Yu, J., Jing, Z., Hui, R., Thakur, K., Wang, S., Hu, F., Guo, J., Jun, Z. (2021). An update on the nutritional, functional, sensory characteristics of soy products, and applications of new processing strategies. Trends in Food Science & Technology, Volume 112, 676-689.
Skandamis, P.N., Jeanson, S. (2015). Colonial vs. planktonic type of growth: mathematical modelling of microbial dynamics on surfaces and in liquid, semi-liquid and solid foods. Front. Microbiol. 6.
Slongo, A. P., Rosenthal, A., Camargo, L. M. Q., Deliza, R., Mathias, S. P., & Aragão, G. M. F. (2009). Modeling the growth of lactic acid bacteria in sliced ham processed by high hydrostatic pressure. LWT — Food Sci. Technol., 42, 303–306.
Tripathi M, Giri S (2014). Probiotic functional foods: survival of probiotics during processing and storage. J. Funct. Foods 9(1), 225- 241.
Wu, T., Yu, X., Hu, A., Zhang, L., Jin, Y., Abid, M. (2015). Ultrasonic disruption of yeast cells: underlying mechanism and effects of processing parameters, Innovative Food Sci. Emerg. Technol. 28, 59–65.
Published
Versions
- 2023-11-23 (6)
- 2023-11-23 (5)
- 2023-11-23 (4)
- 2023-11-23 (3)
- 2023-11-23 (2)
- 2023-11-23 (1)