Apredictive Growth Model for Staphylococcus aureur in a coastal cheese coated winth active film containing aqueous extrac of gliricidia sepium
DOI:
https://doi.org/10.24054/limentech.v21i2.2606Keywords:
active film, cheese, secondary model, aqueous extract, predictive microbiologyAbstract
Se investigó el efecto de la termosonación a tres temperaturas en el crecimiento de bacterias alterantes en el queso Costeño. Se ajustaron recuentos bacterianos a modelos primarios como Gompertz, Huang y Buchanan. Se utilizaron ecuaciones polinómicas para describir el efecto de la termosonación en la velocidad de crecimiento específico. El error cuadrático medio (ECM), el factor de sesgo (Bf) y el factor de precisión (Af) se emplearon para evaluar el rendimiento de los modelos predictivos. El tratamiento más severo aplicado en este estudio fue la termosonación a 40 kHz a 60°C, lo que resultó en una fase de latencia aumentada y una disminución de la velocidad de crecimiento especifica de las bacterias alterantes analizadas. Los valores de la velocidad de crecieminto obtenidos de los modelos de Gompertz y Buchanan se utilizaron para construir ecuaciones polinómicas. Estos modelos secundarios tenían factores de sesgo y factores de precisión cercanos a uno, lo que indica que los modelos polinómicos fueron capaces de describir el crecimiento microbiano en el queso. Estos resultados podrían contribuir a iniciar la aplicación de la termosonación para prolongar la vida útil del queso Costeño.
Downloads
References
Alonso D., E. von Son-de Fernex, B. Valles-de la Mora, P. Mendoza-de Gives, G. Castillo, A. Zamilpa, & C. González. (2018). Effect of Gliricidia sepium leaves intake on larval establishment of Cooperia punctata in calves and bio-guided fractionation of bioactive molecules. Veterinary Parasitology, 252, 137-14. https://doi.org/10.1016/j.vetpar.2018.02.028
Azadbakht E., Y, Maghsoudlou, M. Khomiri, & M. Kashiri. (2018). Development and structural characterization of chitosan films containing Eucalyptus globulus essential oil: Potential as an antimicrobial carrier for packaging of sliced sausage. Food Packaging and Shelf Life, 17, 65-72. https://doi.org/10.1016/j.fpsl.2018.06.002
Baranyi J., T. Ross, T.A. McMeekin, & A.T. Roberts. (1996). Effects of parameterization on the performance of empirical models used in “predictive microbiology”. Food Microbiol, 13, 83-91. https://doi.org/10.1006/fmic.1996.0010
Baranyi J., C. Pin, & T. Ross. (1999). Validating and comparing predictive models. International Journal Food Microbiology, 48, 159-166. https://doi.org/10.1016/S0168-1605(99)00020-2
Choi W.S., N. Son, J.I. Cho, I.S. Joo, J.A. Han, H.S. Kwak, & S.H. Suh. (2019). Predictive model of Staphylococcus aureus growth on egg products. Food Science and Biotechnology, 28, 913-922. https://doi.org/10.1007/s10068-019-00656-4
Geitenes S., M. Oliveira, D.L. Kalschne, & C.M. Sarmento. (2013). Modelagem do crescimento de bactérias láticas e análise microbiológica em apresuntado e presunto cozido fatiados e embalados à vácuo. Revista Ciências Exatas e Naturais, 15, 113-133.
Gorrasi G., V. Bugatti, L. Tammaro, L. Vertuccio, G. Vigliotta, & V. Vittoria. (2016). Active coating for storage of Mozzarella cheese packaged under thermal abuse. Food Control, 64, 10-16. https://doi.org/10.1016/j.foodcont.2015.12.041
Kim Y.H., G.W. Nam, & K.S. Yoon. (2018). Growth and survival of Staphylococcus aureus on beef jerky as a function of temperature. Journal of Food Safety, 38, e12495.
Lin, L., Hu, J. Y., Wu, Y., Chen, M., Ou, J., & Ling, W. (2018). Assessment of the inhibitory effects of sodium nitrite, nisin, potassium sorbate, and sodium lactate on Staphylococcus aureus growth and staphylococcal enterotoxin A production in cooked pork sausage using a predictive growth model. Food Science and Human Wellnes, 7, 83–90. https://doi.org/10.1016/j.fshw.2018.05.002
Lu, H., Sheen, J., Ping, H., Hui, K., Lung, C., Hwang, C., Sheen, S., Huang, L., & Yan, S. I. (2020). Effect of temperature on the growth of Staphylococcus aureus in ready-to-eat cooked rice with pork floss. Food Microbiology, 89, 103374. https://doi.org/10.1016/j.fm.2020.103374
Mgbeahuruike, E., Yrjönen, T., Vuorela, H., & Holm, Y. (2017). Bioactive compounds from medicinal plants: Focus on Piper species. South African Journal of Botany, 112, 54–69. https://doi.org/10.1016/j.sajb.2017.05.002
Ross, T. (1999). Predictive food microbiology models in the meat industry. Meat and Livestock Australia.
Skandamis, P. N., & Jeanson, S. (2015). Colonial vs. planktonic type of growth: mathematical modelling of microbial dynamics on surfaces and in liquid, semiliquid and solid foods. Frontiers in Microbiology, 6, 1178. https://doi.org/10.3389/fmicb.2015.01178
Swinnen, I. A., Bernaerts, K., Dens, E. J., Geeraerd, A., & Van Impe, J. F. (2004). Predictive modelling of the microbial lag phase: a review. International Journal of Food Microbiology, 94(2), 137–159. https://doi.org/10.1016/j.ijfoodmicro.2004.01.006
Tajkarimi, M., Ibrahim, S. A., & Cliver, D. (2010). Antimicrobial herb and spice compounds in food. Food Control, 21(9), 1199–1218. https://doi.org/10.1016/j.foodcont.2010.02.003
Valdramidis, V. P., & Koutsoumanis, K. P. (2016). Challenges and perspectives of advanced technologies in processing, distribution and storage for improving food safety. Current Opinion in Food Science, 12, 63–69. https://doi.org/10.1016/j.cofs.2016.07.007
Wallin-Carlquist, N., Marta, D., Borch, E., & Radstrom, P. (2010). Prolonged expression and production of Staphylococcus aureus enterotoxin A in processed pork meat. International Journal of Food Microbiology, 141(Suppl. 1), S69–S74. https://doi.org/10.1016/j.ijfoodmicro.2010.02.016
Yu, H., Song, Y., Kim, Y. M., Lee, H., Choi, Y., Lee, N., & Paik, H. (2020). Predictive model of growth kinetics for Staphylococcus aureus in raw beef under various packaging systems. Meat Science, 165, 108108.
Downloads
Published
Versions
- 2023-11-23 (6)
- 2023-11-23 (5)
- 2023-11-23 (4)
- 2023-11-23 (3)
- 2023-11-23 (2)
- 2023-11-23 (1)