Analysis of the physical and chemical properties of carrots dehydrated by osmosis and convective drying

Authors

  • Mónica Pacheco University of Pamplona
  • Edwing Velasco University of Pamplona
  • Ana Salazar University of Pamplona
  • Olga Cisneros University of Pamplona
  • Luz Ramírez University of Pamplona

DOI:

https://doi.org/10.24054/limentech.v14i2.831

Keywords:

Dehydration, Hypertonic solution, Hot air, Vegetables

Abstract

In this study, the natural characteristics of carrots (Daucus carota L.) were modified by consecutively applying osmotic dehydration and hot air drying processes. Specifically, the effect of a hypertonic sucrose solution concentrated at 50–60% w/w and a drying temperature of 60 °C on the physical and chemical properties of the vegetable was studied. The dehydrated samples were analyzed comparatively with fresh food by determining moisture content, water activity, soluble solids, pH, acidity percentage, color, and compressive strength. It was found that the combined dehydration process promotes a weight reduction of carrots greater than 70%, with water activity below 0.4, acidity close to 2%, and soluble solids between 28 and 35 °Bx, without significantly modifying the natural color of the food.

Downloads

Download data is not yet available.

References

Ahmed, I., Qazi, I.M. y Jamal, S. Developments in osmotic dehydration technique for the preservation of fruits and vegetables. (2016). Innovative Food Science and Emerging Technologies. 34: 29-43.

Arscott, S.A. And Tanumihardjo, S.A. Carrots of many colors provide basic nutrition and bioavailable phytochemicals acting as a functional food. (2010). Comprehensive Reviews in Food Science and Food Safety. 9: 223–239.

Bradley, R.J. Food Analysis. USA: Springer Science+Business Media, 2010. p. 85-107.

Chou, S.K. y Chua, K.J. New hybrid drying technologies for heat sensitive foodstuffs. (2001). Trends in Food Science & Technology. 12(10): 359–369.

Della Rocca, P.A., Roche, L.A. y Mascheroni, R.H. Estudio de la (d) transferencia de agua durante la deshidratación osmótica de zanahoria. (2013). Proyecciones.11(2): 81-91.

Dixon, G.M. y Jen, J.J. Changes of sugar and acid in osmovac dried apple slices. (1977). Journal of Food Science. 42: 1126-1131.

Mihoubi, D., Timoumi, S. y Zagrouba, F. Modelling of convective drying of carrot slices with IR heat source. (2009). Chemical Engineering and Processing.48: 808–815.

Nakagawa, K. y Ochiai, T. A mathematical model of multi-dimensional freeze-drying for food products. (2015). Journal of Food Engineering. 161: 55–67.

Nanjundaswamy, A.M., Radhakrishnaiah, S.G., Balachandran, C., Saroja, S. y Murthy, R.K. Studies on development of new categories of dehydrated products from indigenous fruits. (1978). Indian Food Packer. 22: 91–93.

Pacheco-Angulo, H., Herman-Lara, E., García-Alvarado, M.A. And Ruiz-López, I.I. Mass transfer modeling in osmotic dehydration: Equilibrium characteristics and process dynamics under variable solution concentration and convective boundary. (2016). Food and BioproductsProcessing. 97: 88–99.

Pascau. J. And Mateos, J. Image processing with ImageJ. (2013). Disponible en: http://imagej.nih.gov/ij/docs/index.html

Pua,R. Amparo,Barreto,G.R,y ArizaC. S. (2015). Extracción y caracterización de la pectina obtenida a partir de la cáscara de limón Tahití (citrus x latifolia) en dos estados de maduración. Revista @limentech, Ciencia y Tecnología Alimentaria. ISSN 1692-7125.Volumen 13, N° 2, p 5 -16.

Raoult-Wack, A.L. Advances in osmotic dehydration. (1994). Trends in Food Science & Technology. 5: 255-260.

Rastogi, N.K., Raghavarao, K. y Niranjan, K. Chapter 11: Recent Developments in Osmotic Dehydration. (2014). Emerging Technologies for Food Processing. 181-212.

Revaskar, V., Sharma, G.P., Verma, R.C., Jain, S.K. And Chahar, V.K. Drying behaviour y energy requirement for dehydration of white onion slices. (2007). International Journal of Food Engineering. 3(5): 1-16.

Sadler, G.D. y Murphy, P.A. Food Analysis. USA:Springer Science+Business Media, 2010. p. 219-230.

Sanz, J.C. y Gallego, R. Diccionario Akal del Color. Akal, 2001, p. 600-650.

Sharma, K.D., Karki, S., Thakur, N.S. y Attri, S. Chemical composition, functional properties and processing of carrot –a review. (2012). Journal of Food Science and Technology.49(1): 22–32.

Simal, S., Benedito, J., Sanchez, E.S. y Rossello, C. Use of ultrasound to increase ass transport rates during osmotic dehydration. (1998). Journal of Food Engineering. 36: 323-336.

Singh, B., Panesar, P.S., Nanda, V. y Kennedy, J.F. Optimization of osmotic dehydration process of carrot cubes in mixtures of sucrose and sodium chloride solutions. (2010). Food Chemistry. 123: 590-600.

Singh, C., Sharma, H.K. y Sarkar, B.C. (2010). Influence of process conditions on the mass transfer during osmotic dehydration of coated pineapple samples. Journal of Food Processing and Preservation. 34: 700-714.

Sutar, P.P. y Prasad, S. Optimization of osmotic dehydration of carrots under atmospheric and pulsed microwave vacuum conditions. (2011). Drying Technology. 29: 371-380.

Torregginni, D. Osmotic dehydration in fruits and vegetable processing. (1993). Food Research International. 26: 59-68.

Torres, J.D., Talens, P., Carot, J.M., Chiralt, A. y Escriche, I. Volatile profile of mango (Mangifera indica L.), as affected by osmotic dehydration. (2007). Food Chemistry. 101: 219-228.

Vázquez-Vila, M.J., Chenlo-Romero, F., Moreira-Martínez, R. y Pacios-Penelas, B. Dehydration kinetics of carrots (Daucus carotaL.) in osmotic and air convective drying processes. (2009).

Spanish Journal of Agricultural Research. 7(4): 869-875.Vega-Mercado, H., Angora-Nieto, M.M. y Bartosa-Cánovas, G.V. (2001). Advanced in dehydration of food. Journal of Food Engineering. 49: 271–89.

Vega-Mercado, H., Angora-Nieto, M.M. y Bartosa-Cánovas, G.V. Advanced in dehydration of food. (2001). Journal of Food Engineering. 49: 271–289.

Published

2016-12-29

How to Cite

Pacheco , M., Velasco , E., Salazar , A., Cisneros , O., & Ramírez , L. (2016). Analysis of the physical and chemical properties of carrots dehydrated by osmosis and convective drying. @limentech, Ciencia Y Tecnología Alimentaria, 14(2), 42–53. https://doi.org/10.24054/limentech.v14i2.831

Issue

Section

Artículos