Effect of two drying methodologies of pineapple slices (ananas comosus) on the nutritional content

Authors

  • Leocadia Flor Pérez Romero
  • Alan Jesus Manrique Ysaias
  • Anghie Tatiana Torres Terrel
  • Diana Rosa Yauri Mayorga
  • Jasiel Jemina Romo Huayllani
  • Enzo Martín Casimiro Soriano

DOI:

https://doi.org/10.24054/limentech.v18i2.317

Keywords:

solar drying, incubator drying, pineapple, nutrients

Abstract

Pineapple (Ananas comosus) is a tropical fruit characterized by its nutritional content and moisture. Therefore, it is necessary to extend its useful life through drying without affecting its nutritional properties. The objective of the research was to determine the effect of the methodologies of solar drying and by induction of heat in the stove, on the nutritional content of pineapple slices. For this, the sensory and physicochemical analysis of fresh and dried pineapple samples was carried out. The sun-dried samples initially had a humidity of 8,.29%, 15,3 °brix and pH of 3,75. The initial concentrations of micronutrients (in mg/100 g of pineapple) were 28,20 for Ca, 8,50 for Mg, 3,96 for P and 140 forK. After drying in both methods, affectation was found in the sensory characteristics due to loss of aroma, color change, intensification of sweet flavor, lower pulp consistency and increase in the concentration of micronutrients. Comparing both drying techniques, significant differences were observed in the micronutrients for both methods (p<0,05) according to the Student's t test. The calcium and potassium content were higher after drying in the oven (420 and 310 mg/100g of pineapple, respectively) and the content of magnesium and phosphorus were higher forsolar drying (650 and 540 mg/100g of pineapple, respectively). The results indicate that the quality characteristics were better after drying by electric induction of heat in an oven.

Downloads

Download data is not yet available.

References

Abano, E. E., & Sam-Amoah, L. K. (2011). Effects of different pretreatments on drying characteristics of banana slices. APRN Journal of Engineering and Applied Science, 6(1), 121-129.

Agraria. (2017). Áreas de cultivo de piña en Perú habrían crecido 30% este año. Lima, Perú: Agencia Agraria de Noticias. Retrieved from https://agraria.pe/noticias/areas-de-cultivo-de-pina-en-peru-habrian-crecido-30-este-ano-15530

Aguilar, S. (2007). Secado de rodajas de piña (Ananas comosus) previamente deshidratadas en soluciones osmóticas de sacarosa-agua-etanol (Bachelor's thesis). Universidad Nacional de San Martín, San Martín, Perú.

Aliaga Quispe, D. A., & Garzón Flores, B. (2016). Efecto de la quema de purmas sobre la calidad del suelo en el distrito de Pichanaki–Chanchamayo (Bachelor's thesis). Universidad Nacional del Centro del Perú, Junín, Perú.

AOAC. (1984). Official methods of analysis. Washington, D.C.: AOAC International.

AOAC. (2005). Official methods of analysis. Washington, D.C.: AOAC International.

Ascurra, J. M., Clavo, G. V., Cabrera, D. M., Herrera, F. F., & Hidalgo, V. P. (2018). Deshidratación de la piña (Ananas comosus) por métodos combinados (osmosis convencional). BIG BANG FAUSTINIANO, 6(4), 11-13.

Atlas Big. (2019). Los principales países productores de piña del mundo. España: Atlasbig.com. Retrieved from https://www.atlasbig.com/es-es/paises-por-produccion-de-pina

Bécquer Frauberth, C. L., Leonardo Ederson, P. C., Torres, E. T., Massipe Hernández, J. R., & Quispe Flores, M. (2020). Velocidad de secado en tres tipos de secadores solares del aguaymanto (Physalis peruviana L.). Ingeniare. Revista chilena de ingeniería, 28(2), 248-254.

Chaudhary, V., Kumar, V., & Vaishali, S. (2019). Pineapple (Ananas comosus) product processing: A review. Journal of Pharmacognosy and Phytochemistry, 8(3), 4642-4652.

Debnath, P., Dey, P., Chanda, A., & Bhakta, T. (2012). A survey on pineapple and its medicinal value. Scholars Academic Journal of Pharmacy, 1(1), 24-29.

FAO. (2011). Codex Stan 182-1993: Normas del Codex para la piña. Nueva York, Estados Unidos: FAO Publishing. Retrieved from http://www.fao.org/input/download/standards/313/CXS_182s.pdf

FAO. (2017). Perspectivas mundiales de las principales frutas tropicales. Nueva York, Estados Unidos: FAO Publishing. Retrieved from http://www.fao.org/fileadmin/templates/est/COMM_MARKETS_MONITORING/Tropical_Fruits/Documents/Tropical_Fruits_Spanish2017.pdf

FAO. (2018). Major tropical fruits: Market review 2018. Nueva York, Estados Unidos: FAO Publishing. Retrieved from http://www.fao.org/3/ca5692en/ca5692en.pdf

FAO. (2019). Medium-term outlook: Prospects for global production and trade in bananas and tropical fruits 2019-2028. Nueva York, Estados Unidos: FAO Publishing. Retrieved from http://www.fao.org/3/ca7568en/ca7568en.pdf

Fayose, F., & Huan, Z. (2016). Heat pump drying of fruits and vegetables: Principles and potentials for Sub-Saharan Africa. International Journal of Food Science, 1(1), 9673029.

Femenia, A., Simal, S., Taberner, C. G., & Rosselló, C. (2007). Effects of heat treatment and dehydration on pineapple (Ananas comosus L. Merr) cell walls. International Journal of Food Engineering, 3(2), 29-35.

Ferreira, E. A., Siqueira, H. E., Boas, E. V. V., Hermes, V. S., & Rios, A. D. O. (2016). Bioactive compounds and antioxidant activity of pineapple fruit of different cultivars. Revista Brasileira de Fruticultura, 38(3), 1-7.

Flaschka, H., & Barnard Jr., A. (1960). Advances in analytical chemistry and instrumentation. New York: Interscience Publishers Inc.

Forson, F. K., Nazha, M. A. A., Akuffo, F. O., & Rajakaruna, H. (2007). Design of mixed-mode natural convection solar crop dryers: Application of principles and rules of thumb. Renewable Energy, 32(14), 2306-2319.

García, B., Yulieth P., Caballero, P. L. A., & Maldonado, O. Y. (2016). Evaluación del color en el tostado de haba (Vicia faba). Revista @limentech, Ciencia y Tecnología Alimentaria, 14(2), 54-67.

García Huamán, F., Bejarano Luján, D., Paredes Quiroz, L., Vega Rojas, R., & Encinas Puscán, J. (2018). La deshidratación osmótica mejora la calidad de Ananas comosus deshidratada. Scientia Agropecuaria, 9(3), 349-357.

García Pereira, A., Muñiz Becerá, S., Hernández Gómez, A., González, L. M., & Fernández Valdés, D. (2013). Análisis comparativo de la cinética de deshidratación osmótica y por flujo de aire caliente de la piña (Ananas comosus, variedad Cayena lisa). Revista Ciencias Técnicas Agropecuarias, 22(1), 62-69.

García Tain, Y., Pérez Padrón, J., García Pereira, A., & Hernández Gómez, A. (2011). Determinación de las propiedades de calidad de la piña (Ananas comosus) variedad Cayena Lisa almacenada a temperatura ambiente. Revista Ciencias Técnicas Agropecuarias, 20(1), 62-65.

Granados-Conde, C., Torrenegra-Alarcon, M., Leon-Mendez, G. A. P., Jimenez-Nieto, Y., & Carriazo-Marmolejo, L. (2019). Deshidratación osmótica: método alternativo de conservación de alimentos. Revista @limentech, Ciencia y Tecnología Alimentaria, 17(2), 101-114.

Haqbeen, N., Sagar, V., Rudra, S., & Prasad, K. (2019). Effect of pre-treatments and drying methods on the quality attributes of dehydrated pineapple slices. Journal of Horticulture and Postharvest Research, 2(2), 157-166.

Harrison, J. A., & Andress, E. L. (2008). Preserving food: Drying fruits and vegetables. University of Georgia Cooperative Extension. Athens, Estados Unidos: Department of Agriculture. Retrieved from https://nchfp.uga.edu/publications/uga/uga_dry_fruit.pdf

Hemalatha, R., & Anbuselvi, S. (2013). Physicohemical constituents of pineapple pulp and waste. Journal of Chemical and Pharmaceutical Research, 5(2), 240-242.

Hossain, M. F., Akhtar, S., & Anwar, M. (2015). Nutritional value and medicinal benefits of pineapple. International Journal of Nutrition and Food Sciences, 4(1), 84-88.

Iglesias Díaz, R., José Gómez, R. A., Lastres Danguillecourt, O., López de Paz, P., Farrera Vázquez, N., & Ibáñez Duharte, G. R. (2017). Diseño, construcción y evaluación de un secador solar para mango Ataulfo. Revista mexicana de ciencias agrícolas, 8(8), 1719-1732.

Kaur, R., Gul, K., & Singh, A. K. (2016). Nutritional impact of ohmic heating on fruits and vegetables: A review. Cogent Food & Agriculture, 2(1), 1159000.

Khanom, S. A. A., Rahman, M. M., & Uddin, M. B. (2015). Preparation of pineapple (Ananas comosus) candy using osmotic dehydration combined with solar drying. The Agriculturists, 13(1), 87-93.

Kumar, S., & Shukla, R. N. (2017). Different pre-treatments and storage stability of dehydrated pineapple slices. International Journal of Agricultural Science and Research, 7(2), 413-424.

Link, J. V., Tribuzi, G., & Laurindo, J. B. (2017). Improving quality of dried fruits: A comparison between conductive multi-flash and traditional drying methods. LWT, 84, 717-725.

Macías-Ganchozo, E. R., Bello-Moreira, I. P., Trueba-Macías, S. L., Anchundia-Muentes, X. E., Anchundia-Muentes, M. E., & Bravo-Moreira, C. D. (2018). Design, development and performance of solar dryer for pineapple (Ananas comosus (L.) Merr.), mamey (Mammea americana L.) and banana (Musa paradisiaca L.) fruit drying. Acta Agronómica, 67(1), 30-38.

Maisnam, D., Rasane, P., Dey, A., Kaur, S., & Sarma, C. (2017). Recent advances in conventional drying of foods. Journal of Food Technology and Preservation, 1(1), 25-34.

Morales, M., Hernández, M. S., Cabezas, M., Barrera, J., & Martínez, O. (2001). Caracterización de la maduración del fruto de piña nativa (Ananas comosus L. Merrill) CV. India. Agronomía colombiana, 18(1-3), 63-69.

Mounika, J., Rao, M. R., & Bhasker, V. (2017). Development of value addition of pineapple (Ananas comosus) chunks using solar dehydration technology. MOJ Food Process Technol, 4(1), 18-23.

Muñoz, D. M., & Cabrera, G. (2006). El secado directo e indirecto de piña. Biotecnología en el Sector Agropecuario y Agroindustrial, 4(1), 58-66.

Ochoa, M. R., Kesseler, A. G., Pirone, B. N., Márquez, C. A., & De Michelis, A. (2007). Analysis of shrinkage phenomenon of whole sweet cherry fruits (Prunus avium) during convective dehydration with very simple models. Journal of Food Engineering, 79(2), 657-661.

Omolola, A. O., Jideani, A. I., & Kapila, P. F. (2017). Quality properties of fruits as affected by drying operation. Critical Reviews in Food Science and Nutrition, 57(1), 95-108.

Pardo, M., & Leiva, A. (2009). Combination of technologies for the dehydration of pineapple. Ingeniería y Competitividad, 11(1), 57-65.

Paternina, M. G., Alvis, A., & Mogollon, C. G. (2015). Modelado de la cinética de secado de mango pretratadas con deshidratación osmótica y microondas. Biotecnología en el Sector Agropecuario y Agroindustrial, 13(2), 22-29.

Quintana, F., Lucas, F., Gómez, S., Garcia, A., & Martinez, N. (2015). Perfil sensorial del clon de cacao (Theobroma cacao L.) CCN51. Revista @limentech, Ciencia y Tecnología Alimentaria, 13(1), 60-65.

Ramallo, L. A., & Mascheroni, R. H. (2012). Quality evaluation of pineapple fruit during drying process. Food and Bioproducts Processing, 90(2), 275-283.

Ramírez, G. L. E. (2016). Análisis de las propiedades físicas y químicas de zanahoria deshidratada por ósmosis y secado convectivo. Revista @limentech, Ciencia y Tecnología Alimentaria, 14(2), 42-53.

Recio Colmenares, R. B., Recio Colmenares, C. L., & Pilatowsky Figueroa, I. (2019). Estudio experimental de la deshidratación de tomate verde (Physalis ixocarpa Brot) utilizando un secador solar de tipo directo. Revista de la Facultad de Ciencias Básicas, Bistua, 17(1), 76-86. https://doi.org/10.24054/01204211.v1.n1.2019.3136

Rodriguez, A., Bruno, E., Paola, C., Campañone, L., & Mascheroni, R. H. (2019). Experimental study of dehydration processes of raspberries (Rubus idaeus) with microwave and solar drying. Food Science and Technology, 39(2), 336-343.

Sagar, V. R., & Kumar, P. S. (2010). Recent advances in drying and dehydration of fruits and vegetables: A review. Journal of Food Science and Technology, 47(1), 15-26.

Sakif, A. S., Saikat, N. M., & Eamin, M. (2018). Drying and dehydration technologies: A compact review on advance food science. Journal of Mechanical and Industrial Engineering Research, 7(1), 1-10.

Serna Tiana, F., Contreras, S. Y., Lozano, P. M., Salcedo, M. J., & Hernández, R. J. (2017). Variación del método de secado en la fermentación espontánea de almidón nativo de yuca. Revista @limentech, Ciencia y Tecnología Alimentaria, 15(1), 50-65.

Silva, K. S., Fernandes, M. A., & Mauro, M. A. (2014). Effect of calcium on the osmotic dehydration kinetics and quality of pineapple. Journal of Food Engineering, 134(1), 37-44.

Sinuco, D. C., & Morales Pérez, A. L. (2005). El aroma de la piña (Ananas comosus L.): estudio y desarrollo de aromatizantes naturales y artificiales. Bogotá, Colombia: Unibiblos, Universidad Nacional de Colombia.

Victor, S. L., Garg, M. K., & Pawar, K. (2019). Effect of different drying techniques on the quality attributes of pineapple powder. International Journal of Current Microbiology and Applied Sciences, 8(2), 324-341.

Weather Spark. (2017). El clima promedio en Satipo. Estados Unidos: Cedar Lake Ventures Inc. Retrieved from https://es.weatherspark.com/y/23283/Clima-promedio-en-Satipo-Per%C3%BA-durante-todo-el-a%C3%B1o

Zhang, M., Chen, H., Mujumdar, A. S., Tang, J., Miao, S., & Wang, Y. (2017). Recent developments in high-quality drying of vegetables, fruits, and aquatic products. Critical Reviews in Food Science and Nutrition, 57(6), 1239-1255.

Zhang, M., Tang, J., Mujumdar, A. S., & Wang, S. (2006). Trends in microwave-related drying of fruits and vegetables. Trends in Food Science & Technology, 17(10), 524-534.

Published

2021-01-08 — Updated on 2020-11-20

Versions

How to Cite

Pérez Romero, L. F., Manrique Ysaias, A. J., Torres Terrel, A. T., Yauri Mayorga, D. R., Romo Huayllani, J. J., & Casimiro Soriano, E. M. (2020). Effect of two drying methodologies of pineapple slices (ananas comosus) on the nutritional content. @limentech, Ciencia Y Tecnología Alimentaria, 18(2), 5–24. https://doi.org/10.24054/limentech.v18i2.317 (Original work published January 8, 2021)

Issue

Section

Artículos