Rheological properties of a cookie product made from quinoa flour (Chenopodium quinoa)

Authors

  • Amparo Luz Púa Rosado
  • Carolina Torregrosa Romero
  • Elverling Torres Barraza
  • Genisberto Enrique Barreto Rodríguez
  • Ronald Marsiglia Fuentes

DOI:

https://doi.org/10.24054/limentech.v20i2.2287

Keywords:

gluten, pseudoplástico, quinua, viscoelástico, viscosidad

Abstract

Currently, the consumption of gluten-free foods has increased, partly due to a significant rise in people with gastrointestinal disorders such as celiac disease. Consequently, the food industry has explored various grains and pseudocereals to innovate and market gluten-free products. This study conducted rheological analyses on quinoa flour-based cookie dough at room temperature using a controlled force rheometer. Viscosity of the cookie dough was analyzed through a flow curve, and the linear viscoelastic region was determined via stress sweep and frequency sweep tests. Results were compared with a control formulation using wheat flour to assess gluten's impact on behaviors.

From the flow curve, it was deduced that the quinoa flour-based cookie dough exhibited viscous behavior characteristic of a non-Newtonian pseudoplastic fluid, time-independent, fitting well with the Cross mathematical model with determination coefficients of 0.97 and 0.94 for the two formulations, respectively. Oscillatory tests determined the linear viscoelastic region, showing that the storage modulus (G’) was consistently higher than the loss modulus (G’’) for both stress and frequency sweeps. It was concluded that the quinoa flour-based formulation also displayed viscoelastic behavior, with elastic dominance over viscous components.

References

Aguilera, J. M., & Stanley, D. W. (1999). Microstructural principles of food processing and engineering. Recuperado de https://books.google.com.co/books?id=nIeJiL_dLeQC&printsec=frontcover&dq=Microstructural+Principles+of+Food+Processing+and+Engineering&hl=es&sa=X&ved=0ahUKEwi0k7WhqZHdAhXEtVkKHZaNA0cQ6AEIKjAA#v=onepage&q=Microstructural%20Principles%20of%20Food%20Processing%20and%20Engineering&f=false

Ahmed, J., Thomas, L., & Ali, Y. (2019). Functional rheological, microstructural and antioxidant properties of quinoa flour in dispersions as influenced by particle size. Food Research International, 116, 3012-311.

Azón, C. G. (2016). Book reviews: Rheological Methods in Food Process Engineering. James F. Steffe. Second edition published by Freeman Press, 2807 Still Valley Dr., East Lansing, MI 48823. Http://Dx.Doi.Org/10.1177/108201329700300108, 3(1), 61–62. https://doi.org/10.1177/108201329700300108

Bhandari, P. N., Singhal, R. S., & Kale, D. D. (2002). Effect of succinylation on the rheological profile of starch pastes. Carbohydrate Polymers, 47(4), 365–371. https://doi.org/10.1016/S0144-8617(01)00215-6

Cerezal Mezquita, P., Urtuvia Gatica, V., Ramírez Quintanilla, V., & Arcos Zavala, R. (2011). Desarrollo de producto sobre la base de harinas de cereales y leguminosa para niños celíacos entre 6 y 24 meses; II: Propiedades de las mezclas. Nutrición Hospitalaria, 26(1), 161-169.

Díaz-Ocampo, R., García-Zapateiro, L., Franco-Gómez J., & Vallejo-Torres, C. (2012). Caracterización bromatológica, fisicoquímica microbiológica y reológica de la pulpa de borojó (Borojoa patinoi Cuatrec). Ciencia y Tecnología, 5(1), 17-24.

Dueñas Quintero, D. M. (2014). Vigilancia competitiva de la quinua: potencialidad para el departamento de Boyacá. Suma de Negocios, 5(12), 85-95. https://doi-org.ezproxy.unal.edu.co/10.1016/S2215-910X(14)70030-8

Escobar Harvez, F. E. (2008). Comportamiento reológico de algunos lípidos en estado de pureza técnica y de sus mezclas. Universidad Austral de Chile. Recuperado de http://cybertesis.uach.cl/tesis/uach/2008/fae.74c/doc/fae.74c.pdf

Food and Agriculture Organization of the United Nations Rome. (2013). Dietary protein quality evaluation in human nutrition. Recuperado de http://www.fao.org/ag/humannutrition/3597 8-02317b979a686a57aa4593304ffc17f06.pdf

Gujral, H. S., Guardiola, I., Carbonell, J. V., & Rosell, C. M. (2003). Effect of cyclodextrinase on dough rheology and bread quality from rice flour. Journal of Agricultural and Food Chemistry, 51(13), 3814–3818. https://doi.org/10.1021/JF034112W

Guleria, P., & Yadav, B. S. (2022). Effect of chemical treatments on the functional, morphological and rheological properties of starch isolated from pigeon pea (Cajanus cajan). Current Research in Food Science, 5, 1750–1759. https://doi.org/10.1016/j.crfs.2022.10.001

Henao Osorio, S., & Aristizábal Galvis, J. (2009). Influencia de la variedad de yuca y nivel de sustitución de harinas compuestas sobre el comportamiento reológico en panificación. Ingeniería e Investigación, 29(1), 39-46.

Lamacchia, C., Aldo Di, L., Camarca, A., Picascia, S., & Gianfrani, C. (2014). Cereal-based gluten-free food: How to reconcile nutritional and technological properties of wheat proteins with safety for celiac disease patients. Nutrients, 6(2), 575-590.

Lille, M., Nurmela, A., Nordlund, E., Metsä-Kortelainen, S., & Sozer, N. (2018). Applicability of protein and fiber-rich food materials in extrusion-based 3D printing. Journal of Food Engineering, 220, 20–27. https://doi.org/10.1016/J.JFOODENG.2017.04.034

Mao, S., Kaur, L., Mu, T.-H., & Singh, J. (2022). Development and Characterisation of Plant and Dairy-Based High Protein Chinese Steamed Breads (mantou): Physico-chemical and textural characteristics. Food Hydrocolloids for Health, 100102. https://doi.org/10.1016/j.fhfh.2022.100102

Molina-Rosell, C. (2013). Capítulo 22: Alimentos sin gluten derivados de cereales. En L. Rodrigo y A. S. Peña (Eds.), Enfermedad celíaca y sensibilidad al gluten no celíaca (pp. xx-xx). Barcelona, España: OmniaScience.

Organización de las Naciones Unidas para la Alimentación y la Agricultura. (s.f.). Quinua. Recuperado de https://www.fao.org/quinoa/es/

Ortega, G., Hernández, D., & Acosta, Z. (2013). Desarrollo y caracterización de un producto libre de gluten a base de harinas de maíz, arroz y quinua. Alimentos Hoy, 22(29), 47-60.

Ortega, M. (2008). Propiedades viscoelásticas y reológicas estacionarias de suspensiones de almidón nativo de quinua. Universidad de Chile. Recuperado de https://repositorio.uchile.cl/handle/2250/105246

Pando, L., & Aguilar, E. (2016). Guía de cultivo de la quinua. FAO. Recuperado de https://www.bivica.org/files/quinua-cultivo-guia.pdf

Pereira, E., Encina-Zelada, C., Barros, L., Gonzales-Barron, U., Cadavez, V., & Ferreira, I. C. (2019). Chemical and nutritional characterization of Chenopodium quinoa Willd (quinoa) grains: A good alternative to nutritious food. Food Chemistry, 280, 110-114. https://doi-org.ezproxy.unal.edu.co/10.1016/j.foodchem.2018.12.068

Púa, A. L., Barreto, G. E., & Pérez, M. A. (2016). Elaboración y evaluación de una galleta a base de harina de quinua (Chenopodium quinoa). Agronomía Colombiana, 34(1), 944-946.

Pulatsu, E., Su, J. W., Kenderes, S. M., Lin, J., Vardhanabhuti, B., & Lin, M. (2022). Restructuring cookie dough with 3D printing: Relationships between the mechanical properties, baking conditions, and structural changes. Journal of Food Engineering. Advance online publication. https://doi.org/10.1016/j.jfoodeng.2021.110911

Rashid, N., Wahid, A., Ibrar, D., Irshad, S., Hasnain, Z., Al-Hashimi, A., ... & Khan, S. (2022). La aplicación de promotores de crecimiento naturales y sintéticos mejora la productividad y la calidad del cultivo de quinua a través de actividades fotosintéticas y antioxidantes mejoradas. Fisiología y bioquímica vegetal, 182, 1-10. https://doi-org.ezproxy.unal.edu.co/10.1016/j.plaphy.2022.04.012

Restrepo, L. A. M. (2005). Análisis de variables estratégicas para la conformación de una cadena productiva de quinua en Colombia. Revista Innovar, 5(25), 103-119.

Sarabhai, S., & Prabhasankar, P. (2015). Influence of whey protein concentrate and potato starch on rheological properties and baking performance of Indian water chestnut flour based gluten-free cookie dough. LWT, 63(2), 1301–1308. https://doi.org/10.1016/J.LWT.2015.03.111

Tirado, D., Acevedo, D., & Torres, R. (2015). Caracterización reológica de una espuma a base de clara de huevo, azúcar y pulpa de tamarindo. Revista U.D.C.A Actualidad & Divulgación Científica, 18(2), 465-473.

Vilcacundo, R., & Hernández-Ledesma, B. (2017). Nutritional and biological value of quinoa (Chenopodium quinoa Willd.). Current Opinion in Food Science, 14, 1-6. https://doi-org.ezproxy.unal.edu.co/10.1016/j.cofs.2016.11.007

Yang, H., Irudayaraj, J., Otgonchimeg, S., & Walsh, M. (2004). Rheological study of starch and dairy ingredient-based food systems. Food Chemistry, 86(4), 571–578. https://doi.org/10.1016/J.FOODCHEM.2003.10.004

Zannini, E., Jones, J. M., Renzetti, S., & Arendt, E. K. (2012). Functional replacements for gluten. Annual Review of Food Science and Technology, 3, 227-245. http://www.annualreviews.org/doi/full/10.1146/annurev-food-022811-101203

Published

2023-02-10 — Updated on 2022-12-01

Versions

How to Cite

Púa Rosado, A. L., Torregrosa Romero, C., Torres Barraza, E., Barreto Rodríguez, G. E., & Marsiglia Fuentes, R. (2022). Rheological properties of a cookie product made from quinoa flour (Chenopodium quinoa). @limentech, Ciencia Y Tecnología Alimentaria, 20(2), 24–40. https://doi.org/10.24054/limentech.v20i2.2287 (Original work published February 10, 2023)

Issue

Section

Artículos