Spirulina as a superfood: uses and benefits
DOI:
https://doi.org/10.24054/limentech.v20i2.2271Keywords:
spirulina, uses, health benefit, enriched foodAbstract
The microalgae Arthrospiraplatensis, commonly known as Spirulina, is a blue-green colonial cyanobacterium considered one of the most amazing foods today, which has drawn the attention of researchers and experts in human nutrition due to its high content of macro and micro-nutrients and their therapeutic uses. The objective of this work is to expose the reasons why spirulina algae is correctly classified as a superfood.Systematic review of the works published in MEDLINE, EMBASE, Scopus and ProQuest databases. The search was not limited by year of publication, excluding articles with low scientific evidence. Search terms: Spirulina, Nutritional potential, Superfood, Uses and benefits/Nutritional value. Studies that demonstrated the benefits of spirulina algae supplementation and itseffects on nutritional status were chosen.Spirulina algae contains about 95% of the nutrients considered essential in human nutrition, which makes it an ideal food, these nutrients ranging from proteins, vitamins, minerals, essential fatty acids, amino acids, mucopolysaccharides, carbohydrates, nucleic acids, antioxidants, even various types of pigments and phytochemicals of significant value for the nutrition and health of the human being.There are studies that show that spirulina algae has lipid-lowering effects with a decrease in atherogenic risk, and also thanks to its high content of essential fatty acids, it is great to help in the control and/or prevention of diseases such as obesity, arthritis, alcoholism, neuropsychiatric and inflammatory diseases. Spirulina algae is rightly classified as a superfood, since it contains all the nutrients to maintain health in a balanced way, it is also a food of ancient use, bioavailable and accessible to most of the population.Financial support was provided by the researcher's own resources.
Downloads
References
Ayehunie, S., Belay, A., Baba, T. W., & Ruprecht, R. M. (1998). Inhibition of HIV-1 replication by an aqueous extract of Spirulina platensis (Arthrospira platensis). Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, 18(1), 7-12.
De Jesús, L. C. L., Soares, R. P., Moreira, V. R., Pontes, R. L., Castelo-Branco, P. V., & Pereira, S. R. F. (2018). Genistein and Ascorbic Acid reduce oxidative stress-derived DNA damage induced by antileishmanial meglumine antimoniate. Antimicrobial Agents and Chemotherapy, 62(9), e00456-18.
Delucchi, L., Fraga, M., Perelmuter, K., Cella, C. D., & Zunino, P. (2014). Effect of native Lactobacillus murinus LbP2 administration on total fecal IgA in healthy dogs. Canadian Journal of Veterinary Research, 78(2), 153-155.
Desai, K., & Sivakami, S. (2004). Spirulina: the wonder food of the 21st century. Asia-Pacific Biotech News, 8(23), 1298-1302.
Dillon, J. C., Phuc, A. P., & Dubacq, J. P. (1995). Nutritional value of the alga Spirulina. World Review of Nutrition and Dietetics, 77, 32-46.
Gallardo, C. A., Cano, E., López, G. E., Blas, V., Olvera, R., Franco, M., et al. (2010). Las ficobiliproteínas de Spirulina maxima y Pseudanabaena tenuis protegen contra el daño hepático y el estrés oxidativo ocasionado por el Hg2+. Revista Mexicana de Ciencias Farmacéuticas, 41(2), 30-35.
Hernández-Lepe, M. A., Wall-Medrano, A., Juárez-Oropeza, M. A., Ramos-Jiménez, A., & Hernández-Torres, R. P. (2015). Spirulina y su efecto hipolipemiante y antioxidante en humanos: una revisión sistemática. Nutrición Hospitalaria, 32(2), 494-500.
Hultberg, M., Lind, O., Birgersson, G., & Asp, H. (2017). Use of the effluent from biogas production for cultivation of Spirulina. Bioprocess and Biosystems Engineering, 40(4), 625-631.
Karkos, P. D., Leong, S. C., Karkos, C. D., Sivaji, N., & Assimakopoulos, D. A. (2011). Spirulina in clinical practice: evidence-based human applications. Evidence-Based Complementary and Alternative Medicine, 2011, 531053.
Kim, D. S., Um, Y. R., & Ma, J. Y. (2014). Flavonoid content, free radical scavenging and increase in xanthine oxidase inhibitory activity in Galgeun-tang following fermentation with Lactobacillus plantarum. Molecular Medicine Reports, 10(5), 2689-2693.
Kim, H. M., Shin, H. Y., & Lee, E. H. (1998). Morphological alterations in rat peritoneal mast cells by stem cell factor. Immunology, 94(2), 242-246.
Hayashi, K., Hayashi, T., & Kojima, I. (1996). A natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis: in vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus activities. AIDS Research and Human Retroviruses, 12(15), 1463-1471.
Kumar, S., Kumar, M., & Kumar, A. (2005). Spirulina fusiformis: A Food Supplement against Mercury Induced Hepatic Toxicity. Journal of Health Science, 51(4), 424-430.
Ahsan, M. B., Habib, M. P., Huntington, T. C., & Hasan, M. R. (2008). A Review On Culture, Production And Use Of Spirulina As Food For Humans And Feeds For Domestic Animals And Fish. FAO Fisheries and Aquaculture Circular No. 1034. Disponible en: http://www.fao.org/3/a-i0424e.pdf.
Pérez, L. V., Macías Abraham, C., Torres Leyva, I., Socarrás Ferrer, B. B., Marsán Suárez, V., & Sánchez Segura, M. (2002). Efecto in vitro de la espirulina sobre la respuesta inmune. Revista Cubana de Hematología, Inmunología y Hemoterapia, 18(2).
Perez-Trueba, G., Ramos-Guanche, C., Martinez-Sanchez, B., Marquez-Hernandez, I., Giuliani, A., & Martinez-Sanchez, G. (2003). Protective effect of gossypitrin on carbon tetrachloride-induced in vivo hepatotoxicity. Redox Report: Communications in Free Radical Research, 8(4), 215-221.
Pollock, S. V., Colombo, S. L., Prout, D. L., Godfrey, A. C., & Moroney, J. V. (2003). Rubisco Activase Is Required for Optimal Photosynthesis in the Green Alga Chlamydomonas reinhardtii in a Low-CO(2) Atmosphere. Plant Physiology, 133(4), 1854-1861.
Ramírez-Moreno, L., & Olvera-Ramírez, R. (2006). Uso tradicional y actual de spirulina sp. (Arthrospira sp.). Interciencia, 31(9), 657-663.
Romay, C., Armesto, J., Remirez, D., Gonzalez, R., Ledon, N., & Garcia, I. (1998). Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflammation Research, 47(1), 36-41.
Romay, C., Delgado, R., Ramírez, D., González, R., & Rojas, A. (2001). Effects of phycocyanin extract on tumor necrosis factor-alpha and nitrite levels in serum of mice treated with endotoxin. Arzneimittel-Forschung, 51(9), 733-736.
Romay, C., Gonzalez, R., Ledon, N., Remirez, D., & Rimbau, V. (2003). C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Current Protein & Peptide Science, 4(3), 207-216.
Salomón, S. H. (2009). Historia, nutricion, salud y ecología para generar estrategias de comunicación sobre espirulina (A. maxima). Universidad Nacional Autónoma de México. Disponible en: https://www.algaespirulina.mx/pub/uploads/PDF%20ESPIRULINA/1.pdf.
Sánchez, N., Bu, M., León, N., & Pérez-Saad, H. (2002). Fundamentos de una posible acción beneficiosa de la Spirulina platensis en las neuropatías periféricas. Revista Cubana de Plantas Medicinales, 7(3), 144-145.
Suwalsky, M., Orellana, P., Avello, M., Villena, F., & Sotomayor, C. P. (2006). Human erythrocytes are affected in vitro by extracts of Ugni molinae leaves. Food and Chemical Toxicology, 44(8), 1393-1398.
Shindo, Y., Witt, E., Han, D., & Packer, L. (1994). Dose-response effects of acute ultraviolet irradiation on antioxidants and molecular markers of oxidation in murine epidermis and dermis. The Journal of Investigative Dermatology, 102(4), 470-475.
Torres-Duran, P. V., Ferreira-Hermosillo, A., & Juarez-Oropeza, M. A. (2007). Antihyperlipemic and antihypertensive effects of Spirulina maxima in an open sample of Mexican population: a preliminary report. Lipids in Health and Disease, 6, 1-8.
Valencia-Aviles, E., Garcia-Perez, M. E., Garnica-Romo, M. G., Figueroa-Cardenas, J. D., Melendez-Herrera, E., Salgado-Garciglia, R., et al. (2018). Antioxidant Properties of Polyphenolic Extracts from Quercus Laurina, Quercus Crassifolia, and Quercus Scytophylla Bark. Antioxidants, 7(7), 81-92.
Watanabe, M., Chen, C. Y., & Levin, D. E. (1994). Saccharomyces cerevisiae PKC1 encodes a protein kinase C (PKC) homolog with a substrate specificity similar to that of mammalian PKC. The Journal of Biological Chemistry, 269(24), 16829-16836.
Wu, L. C., Ho, J. A., Shieh, M. C., & Lu, I. W. (2005). Antioxidant and antiproliferative activities of Spirulina and Chlorella water extracts. Journal of Agricultural and Food Chemistry, 53(10), 4207-4212
Downloads
Published
Versions
- 2022-11-15 (3)
- 2023-03-22 (2)
- 2023-02-01 (1)