Use of silver nanoparticles in the control of pathogenic microorganisms present in food
DOI:
https://doi.org/10.24054/limentech.v13i1.1607Keywords:
Food, Pathogenic microorganisms, Silver nanoparticles, Polymeric packagingAbstract
In the food industry there are countless pathogenic microorganisms that can reach the consumer and cause harm to public health. E. coli, S. aures, molds and yeasts are some of the pathogenic microorganisms frequently found in minimally processed fruits. For this reason, it is necessary to find methods that allow controlling their growth, especially under storage conditions prior to consumption. In this study, silver nanoparticles (AgNPs) were synthesized through biotechnological methods and subsequently used in in vitro tests to inhibit microbial growth. In addition, polyethylene bags were modified with an AgNPs solution, these being used for the storage of fruits (tree tomatoes and cape gooseberries) and to observe the effects on the conservation of these two products. The results allowed to determine that AgNPs exert a greater microbicidal effect on yeasts, followed by Gram Negative bacteria and lastly, Gram Positive bacteria. Fruit trials determined that silver nanoparticles exert an inhibitory effect of 3 to 4 log units when accompanied by disinfection and refrigeration processes.
Downloads
References
Gustafson J.E., Muthaiyan A., Dupre J.M., Ricke SC. Staphylococcus aureus and understanding the factors that impact enterotoxin production in foods: A review. Food Control. 2015. 1-14. doi:10.1016/j.foodcont.2014.10.016
MaC., Li J., Zhang Q. 2015.Behavior of Salmonella spp. on fresh-cut tropical fruits. Food Microbiology..1-9. In press.
MPS. Ministerio de la Protección Social de Colombia. Sistema de Inspección, Vigilancia y Control de las Direcciones Territoriales de Salud (IVC). 2010.
Oliveira M, Abadias M, Usall J, Torres R, Teixidó, Viñas I. 2015. Apllication of modifed atmosphere packaging as a safety approach to fresh-cut fruits and vegetables-A review. Trends in
Food Science and Technology. 46:13-26.
Metak A.M., Nabhani F., Connolly SN. 2015. Migration of engineered nanoparticles from packaging into food products. LWT-Food Science and Technology. 64: 781-787
Liua, T, Tadea M, Wanga S, Lib X, Liu S. 2014. Less is more, greener microbial synthesis of silver nanoparticles. Enzyme and Microbial Technology. 67:53–58
Corrales L., Peña V., Caicedo DK. Identificación de Salmonella y Escherichia coli en manos y guantes de manipuladores en planta de sacrificio y faenado de un municipio de Cundinamarca. Ciencias Biomédicas. 6:101-212. ISSN1794- 2470.
Villamizar R, Darghan E, Ortíz O. 2015. Metodología rápida y sencilla para la determinación de colifagos somáticos como
indicadores de contaminación fecal en una planta de tratamiento de agua localizada al Noreste Colombiano. Revista Universidad y Salud. 17:57-68
Villamizar R.A. 2013. Estrategias basadas en Nanotecnología para reducir la presencia de hongos en el ambiente de viviendas en fase de uso. Revista Nano Ciencia y Tecnología. 1:8-12.
Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir. 1996. 12: 788–800
Basavaraja S, Balaji S, Lagashetty S, Rajasab V. 2008. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Materials Research Bulletin. 43:1164–1170
Haytham M.M. 2015. Journal of Radiation Research and Applied Sciences. 8: 265-275
De Roever, C. 1998. Microbiological safety evaluations and recommendations on fresh produce. Food Control 9: 321-347.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 @limentech, Ciencia y Tecnología Alimentaria

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.