Encapsulation of bioactive compounds with alginates for the food industry

Authors

  • Alex López
  • L. Deladino
  • Alba Navarro
  • Miriam Martino

DOI:

https://doi.org/10.24054/limentech.v10i1.1556

Keywords:

Functional foods, Antioxidant extracts, Release, Yerba mate

Abstract

Bioactive compounds such as vitamins, antioxidants, essential oils, enzymes, beneficial microorganisms, etc. can be preserved using various encapsulation techniques. These techniques aim to maintain their activity by completely or partially isolating them from the environment until they are released at the appropriate time and place. Encapsulation is also a source of new ingredients with unique properties. It allows aromas and flavors to be masked or preserved, reduces agglomeration problems and liquid volatility, and improves additive dosage and, therefore, cost-effectiveness. Methods that use sodium or potassium alginate as a precursor to the encapsulating matrix are coacervation and ionic gelation. Combining both mechanisms, our laboratory has studied the encapsulation of yerba mate (Ilex paraguariensis) extracts in calcium alginate matrices with and without chitosan coating to preserve their antioxidant properties. Complex systems have been developed with the addition of filler (starch granules). This allowed to increase the efficiency of the active compound content and the modulation of its release in a simulated gastro-intestinal system.

Downloads

Download data is not yet available.

References

Barba, A. A., d´Amore, M., Chirico, S., Lamberti, G., & Titomanlio, G. (2009). A general code to predict the drug release kinetics from different shaped matrices. European Journal of Pharmaceutical Sciences, 36(2- 3), 359-368.

Borgogna, M., Bellich, B., Zorzin, L., Lapasin, R., & Cesàro, A. (2010). Food microencapsulation of bio- active compounds: Rheological and thermal charac- terisation of non-conventional gelling system. Food Chemistry, 122(2), 416-423.

Bracesco, N., Sanchez, A. G., Contreras, V., Menini, T., & Gugliucci, A. (2011). Recent advances on Ilex paraguariensis research: Minireview. Journal of Ethnopharmacology, 136(3), 378-384.

Brazel, C. S., & Peppas, N. A. (2000). Modeling of drug re- lease from Swellable polymers. European Journal of Pharmaceutics and Biopharmaceutics, 49(1), 47-58.

Champagne, C. P., & Fustier, P. (2007). Microencapsulation for the improved delivery of bioactive compounds into foods. Current Opinion in Biotechnology, 18(2), 184-190.

Deladino, L., Anbinder, P. S., Navarro, A. S., & Martino, M. N. (2008). Encapsulation of natural antioxidants extracted from Ilex paraguariensis. Carbohydrate Polymers, 71(1), 126-134.

Fang, Z., & Bhandari, B. (2010). Encapsulation of polyphe- nols: a review. Trends in Food Science & Technology, 21(10), 510-523.

Gal, A., & Nussinovitch, A. (2007). Hydrocolloid carriers with filler inclusion for diltiazem hydrochloride release. Journal of Pharmaceutical Sciences, 96(1), 168-178.

George, M., & Abraham, T. E. (2006). Polyionic hydro- colloids for the intestinal delivery of protein drugs: Alginate and chitosan: a review. Journal of Controlled Release, 114(1), 1-14.

Gouin, S. (2004). Microencapsulation: industrial appraisal of existing technologies and trends. Trends in Food Science & Technology, 15(7-8), 330-347.

Mastromatteo, M., Mastromatteo, M., Conte, A., & Del Nobile, M. A. (2010). Advances in controlled release devices for food packaging applications. Trends in Food Science & Technology, 21(12), 591-598.

Murúa-Pagola, B., Beristain-Guevara, C. I., & Martínez- Bustos, F. (2009). Preparation of starch derivatives using reactive extrusion and evaluation of modified starches as shell materials for encapsulation of flavoring agents by spray drying. Journal of Food Engineering, 91(3), 380-386.

Peppas, N. A., & Khare, A. R. (1993). Preparation, structure and diffusional behavior of hydrogels in controlled release. Advanced Drug Delivery Reviews, 11(1-2), 1-35.

Peppas, N. A., & Sahlin, J. J. (1989). A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. International Journal of Pharmaceutics, 57(2), 169-172.

Puttipipatkhachorn, S., Pongjanyakul, T., & Priprem, A. (2005). Molecular interaction in alginate beads rein- forced with sodium starch glycolate or magnesium aluminum silicate, and their physical characteristics. International Journal of Pharmaceutics, 293(1–2), 51-62.

Rassis, D. K., Saguy, I. S., & Nussinovitch, A. (2002). Collapse, shrinkage and structural changes in dried alginate gels containing fillers. Food Hydrocolloids, 16(2), 139-151.

Schlesier, K., Harwat, M., Böhm, V., & Bitsch, R. (2002). Assessment of Antioxidant Activity by Using Diffe- rent In Vitro Methods. Free Radical Research, 36(2), 177-187.

Sultana, K., Godward, G., Reynolds, N., Arumugaswamy, R., Peiris, P., & Kailasapathy, K. (2000). Encapsu- lation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. International Journal of Food Microbiology, 62(1-2), 47-55.

Wang, Q., Hu, X., Du, Y., & Kennedy, J. F. (2010). Alginate/ starch blend fibers and their properties for drug contro- lled release. Carbohydrate Polymers, 82(3), 842-847.

Published

2012-06-29

How to Cite

López , A., Deladino, L., Navarro, A., & Martino, M. (2012). Encapsulation of bioactive compounds with alginates for the food industry. @limentech, Ciencia Y Tecnología Alimentaria, 10(1), 18–27. https://doi.org/10.24054/limentech.v10i1.1556

Issue

Section

Artículos