Comparison of two green technologies for the control of methicillin-resistant Staphylococcus aureus growth.

Authors

  • Raquel A. Villamizar Gallardo Universidad de Pamplona
  • Karla Cruz Cuellar Universidad de Pamplona
  • Edgar Emir González Jiménez Pontificia Universidad Javeriana
  • Johann F. Osma Universidad de los Andes

DOI:

https://doi.org/10.24054/limentech.v20i1.1467

Keywords:

Antibacterial agents, nanoparticles, silver, volatile oils

Abstract

Methicillin-resistant Staphylococcus aureus(MRSA) is a pathogenic bacterium that according to the World Health Organization (WHO) should be included in the list of priority pathogens towards which new treatment mechanisms should be developed, given its resistance to antibiotics. Objective:In thisstudy, the bactericidal effect of two products obtained by green chemistry such as essential oils and silver nanoparticles, were compared against a MRSA strain isolated from food. Methods.The evaluation of the inhibition of the bacteria was based on diskdiffusion tests and well plate microdilution in base culture media modified with three different types of essential oils and two types of silver nanoparticles as bactericidal agents. In addition, scanning electron microscopy (SEM) was used to visualize damage at the structural level of the bacteria. Results:The results allowed determining that the essential oil Lippia origanoidesexhibited greater efficacy in inhibiting the growth of MRSA, with a minimum inhibitory concentration and a minimum bactericidalconcentration of 2 mg / ml. On the contrary, silver nanoparticles showed little significant effect in reducing and / or inhibiting the growth of the studied pathogen. Microscopically, it was possible to observe total loss of the bacteria cell wall integrity. Conclusions.It was possible to determine that essential oils were more efficient than silver nanoparticles inhibiting MRSA and, therefore, could be used as a green effective alternative to control pathogenic bacteria growth in food matrices.

Downloads

Download data is not yet available.

References

Balouiri, M., Sadiki, M., & Koraichi, I. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005

Barros, C., Fulaz, S., Stanisic, D., & Tasic, L. (2018). Biogenic nanosilver against multidrug-resistant bacteria (MDRB). Antibiotics, 7(3), 69. https://doi.org/10.3390/antibiotics7030069

Basanisi, M., La Bella, G., & Nobili, G. (2017). Genotyping of methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk and dairy products in South Italy. Food Microbiology, 62, 141-146. https://doi.org/10.1016/j.fm.2016.06.004

Can, H. Y., Elmal, M., & Karagöz, A. (2017). Molecular typing and antimicrobial susceptibility of Staphylococcus aureus strains isolated from raw milk, cheese, minced meat, and chicken meat samples. Korean Journal of Food Science Animal Resources, 37(2), 175-180. https://doi.org/10.5851/kosfa.2017.37.2.175

Cavassin, E., Poli de Figueiredo, L. P., & Otoch, J. P. (2015). Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. Journal of Nanobiotechnology, 13, 64. https://doi.org/10.1186/s12951-015-0168-4

CDC. (2013). Antibiotic resistance threats in the United States. https://www.cdc.gov/drugresistance/threat-report-2013/index.html

Chouhan, S., Sharma, K., & Guleria, S. (2017). Antimicrobial activity of some essential oils—Present status and future perspectives. Journal of Medicine, 4, 58. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5622393/

Clinical and Laboratory Standards Institute (CLSI). (2015). Performance standards for antimicrobial susceptibility testing (26th ed.). Wayne, PA: CLSI. https://clsi.org/standards/products/microbiology/documents/m100/

European Centre for Disease Prevention and Control. (2019). Surveillance of antimicrobial resistance in Europe 2018. Stockholm: ECDC. https://www.ecdc.europa.eu/sites/default/files/documents/surveillance-antimicrobial-resistance-Europe-2018.pdf

Faizan, A. Q., Anam, S., Haris, M. K., Fohad, M., Rais, A. K., Bader, A., Ali, A., & Iqbal, A. (2019). Antibacterial effect of silver nanoparticles synthesized using Murraya koenigii (L.) against multidrug-resistant pathogens. Bioinorganic Chemistry and Applications, Article ID 46499506. https://doi.org/10.1155/2019/4649506

Gómez, L., Nuñez, D., Perozo, A., et al. (2016). Multidrug-resistant (MDR) Staphylococcus aureus in a Maracaibo’s hospital, Venezuela. Kasmera, 44(1), 53-65.

György, E., Laslo, E., Kuzman, I., & András, C. (2020). The effect of essential oils and their combinations on bacteria from the surface of fresh vegetables. Food Science & Nutrition, 8, 5601–5611. https://doi.org/10.1002/fsn3.1864

Herrera, F., García-López, M., & Santos, J. (2016). Characterization of methicillin-resistant Staphylococcus aureus isolated from raw milk fresh cheese in Colombia. Journal of Dairy Science, 99(10), 7872–7876. https://doi.org/10.3168/jds.2016-10588

Lahiri, S., & Alm, R. (2016). Identification of non-PBP2a resistance mechanisms in Staphylococcus aureus after serial passage with ceftaroline: involvement of other PBPs. Journal of Antimicrobial Chemotherapy, 71, 3050–3057. https://doi.org/10.1093/jac/dkw315

Lakhundi, S., & Zhang, K. (2018). Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clinical Microbiology Reviews, 31(4), e00020-18. https://doi.org/10.1128/CMR.00020-18

López, L., Bettin, A., & Suárez, H. (2017). Methicillin-resistant Staphylococcus aureus isolated from raw meat in Cartagena, Colombia. Revista Facultad de Agronomía, 70(1), 8091-8098. https://revistas.unal.edu.co/index.php/refame/article/view/61768

Man, A., Santacroce, L., Jacob, R., Mare, A., & Man, L. (2019). Antimicrobial activity of six essential oils against a group of human pathogens: A comparative study. Pathogens, 8(1), 15. https://doi.org/10.3390/pathogens8010015

Manikprabh, D., Cheng, J., & Chen, W. (2016). Sunlight-mediated synthesis of silver nanoparticles by a novel Actinobacterium (Sinomonas mesophila MPKL 26) and its antimicrobial activity against multidrug-resistant Staphylococcus aureus. Journal of Photochemistry and Photobiology B: Biology, 158, 202–210. https://doi.org/10.1016/j.jphotobiol.2016.08.012

Mascaro, V., Squillace, L., Nobile, C. G. A., Papadopoli, R., Bosch, T., Schouls, L. M., Casalinuovo, F., Musarella, R., & Pavia, M. (2019). Prevalence of methicillin-resistant Staphylococcus aureus (MRSA) carriage and pattern of antibiotic resistance among sheep farmers from Southern Italy. Infectious Drug Resistance, 12, 2561-2571. https://doi.org/10.2147/IDR.S211629

Maya, J. W., & Tarek, N. (2019). Antibacterial effect of leaves of Eucalyptus globulus against clinical bacterial isolates. GSC Biological and Pharmaceutical Sciences, 9(2), 110–116. https://doi.org/10.30574/gscbps.2019.9.2.0205

Medeiros, H., De Lima, I., & Coelho, K. (2014). Effect of Lippia origanoides H.B.K. essential oil in the resistance to aminoglycosides in methicillin-resistant Staphylococcus aureus. European Journal of Integrative Medicine, 6, 560–564. https://doi.org/10.1016/j.eujim.2014.04.002

Naghshbandi, R., Haghighat, S., & Mahdavi, M. (2018). Passive immunization against methicillin-resistant Staphylococcus aureus recombinant PBP2a in sepsis model of mice: Comparable results with antibiotic therapy. International Immunopharmacology, 56, 186-192. https://doi.org/10.1016/j.intimp.2018.01.006

Oliveira, D., Borges, A., & Simoes, M. (2018). Staphylococcus aureus toxins and their molecular activity in infectious diseases. Toxins, 10(6), 252. https://doi.org/10.3390/toxins10060252

Porfirio, E. M., Melo, H. M., Matheus, A., Arruda, T. T., Amorim, G., de Carvalho, A., Albuquerque, R. C., & Aragao, F. (2017). In vitro antibacterial and antibiofilm activity of Lippia alba essential oil, citral, and carvone against Staphylococcus aureus. Scientific World Journal, Article ID 4962707. https://doi.org/10.1155/2017/4962707

Scientific Report of EFSA and ECDC. (2019). Summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals, and food in 2013. EFSA Journal, 17(2), 5598. https://doi.org/10.2903/j.efsa.2019.5598

Villamizar, R. (2016). Biotechnological synthesis of silver nanoparticles using phytopathogenic fungi from cocoa. In Bio-Nanotechnology for Sustainable Environmental Remediation and Energy Generation (pp. 135-150). Bogotá, Colombia: Editorial Academia Colombiana de Ciencias Exactas Físicas y Naturales & Nanoscale Science and Technology Center.

World Health Organization. (2017). Bacteria resistant to antibiotics: World Health Organization. http://www.who.int/mediacentre/news/releases/2017/bacteria-antibiotics-needed/es/

Xuan, H. V., Thi, D., Thi, P., Dinh, K. T., Xuan, H. N., & Van-Son, D. (2018). Synthesis and study of silver nanoparticles for antibacterial activity against Escherichia coli and Staphylococcus aureus. Advances in Natural Sciences: Nanoscale Science and Technology, 9, 025019. https://doi.org/10.1088/2043-6254/aac58f

Published

2022-09-23 — Updated on 2022-06-30

Versions

How to Cite

Villamizar Gallardo, R. A., Cruz Cuellar, K., González Jiménez, E. E., & Osma, J. F. (2022). Comparison of two green technologies for the control of methicillin-resistant Staphylococcus aureus growth. @limentech, Ciencia Y Tecnología Alimentaria, 20(1), 5–20. https://doi.org/10.24054/limentech.v20i1.1467 (Original work published September 23, 2022)

Issue

Section

Artículos