Automation of an anaerobic digester with embedded system for the production of biogas from palm oil residue

Authors

DOI:

https://doi.org/10.24054/rcta.v2i44.2992

Keywords:

acquisition system, anaerobic digestion, automation, biogas

Abstract

This work presents the automation of an anaerobic reactor used for the production of biogas from residual sludge in the palm oil extraction process (POME). The automation process is performed using embedded systems such as the Arduino DUE board. The variables measured in this process are temperature, PH and agitation; the most critical parameters to control that significantly affect biogas production and biogas quality. To control process variables, sensors were used to determine the amount of methane (CH4), carbon dioxide (CO2) and hydrogen sulfide (H2S). For data acquisition, USB communication was used between the embedded card and the PC, using Visual Basic.NET, a system for data acquisition, storage and visualization of the POME biodigestion process variables, measuring the biogas produced in real time and visualizing and storing the information for later statistical analysis.

Downloads

Download data is not yet available.

References

R. Simpson and S. K. Sastry, Chemical and Bioprocess Engineering. 2013. DOI: https://doi.org/10.1007/978-1-4614-9126-2

U. Rasche, “Bioreactors and Fermentors - Powerful Tools for Resolving Cultivation Bottlenecks,” White Pap., vol. 12, no. 21, pp. 1–12, 2021, [Online]. Available: www.eppendorf.group/webinar-shaker-bioreactor.

J. L. Holechek, H. M. E. Geli, M. N. Sawalhah, and R. Valdez, “A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050?,” Sustain., vol. 14, no. 8, pp. 1–22, 2022, doi: 10.3390/su14084792. DOI: https://doi.org/10.3390/su14084792

C. Bourcet, “Empirical determinants of renewable energy deployment: A systematic literature review,” Energy Econ., vol. 85, p. 104563, 2020, doi: 10.1016/j.eneco.2019.104563. DOI: https://doi.org/10.1016/j.eneco.2019.104563

Jurifa, Ingeniería de Software: Reutilización de Software, no. Parte 1. 2012.

B. Drosg, Process monitoring in biogas plants Technical Brochure, no. January 2013. 2013.

C. M. Moreno Rocha and A. A. Medina Guzmán, “Implementación de un sistema de adquisición de datos, Convertidor Análogo Digital (CAD) de 16 Bits a bajo ruido,” Rev. Agunkuyâa, vol. 11, no. 2, pp. 39–58, 2021, doi: 10.33132/27114260.1994. DOI: https://doi.org/10.33132/27114260.1994

D. Wu et al., “Commercial biogas plants: Review on operational parameters and guide for performance optimization,” Fuel, vol. 303, no. 174, 2021, doi: 10.1016/j.fuel.2021.121282. DOI: https://doi.org/10.1016/j.fuel.2021.121282

R. V. BLANCO, “Automatización De Un Biorreactor Piloto,” 2013, [Online]. Available: http://jupiter.utm.mx/~tesis_dig/11686.pdf.

C. López, F. Martínez, and O. Paredes, “Automated Process of Anaerobic Biodigestion,” Rev. Cuba. Ciencias Informáticas, vol. 10, pp. 1–16, 2016, [Online]. Available: http://scielo.sld.cu/pdf/rcci/v10s1/rcci01517.pdf.

I. Viviana, O. Ortega, I. Rivera Mariño, and E. F. Mejía, “PROPUESTA DE AUTOMATIZACIÓN DE UN PROCESO DE PRODUCCIÓN DE INÓCULO DE LEVADURA A ESCALA INDUSTRIAL PARA LA PRODUCCIÓN DE ETANOL,” vol. 13, no. 1, pp. 40–48, 2013. DOI: https://doi.org/10.19053/1900771X.3415

W. Y. Sean, Y. Y. Chu, L. L. Mallu, J. G. Chen, and H. Y. Liu, “Energy consumption analysis in wastewater treatment plants using simulation and SCADA system: Case study in northern Taiwan,” J. Clean. Prod., vol. 276, p. 124248, 2020, doi: 10.1016/j.jclepro.2020.124248. DOI: https://doi.org/10.1016/j.jclepro.2020.124248

A. H. Bhatt and L. Tao, “Economic perspectives of biogas production via anaerobic digestion,” Bioengineering, vol. 7, no. 3, pp. 1–19, 2020, doi: 10.3390/bioengineering7030074. DOI: https://doi.org/10.3390/bioengineering7030074

S. K. Pramanik, “Anaerobic co-digestion of municipal organic solid waste: Achievements and perspective,” Bioresour. Technol. Reports, vol. 20, p. 101284, Dec. 2022, doi: 10.1016/J.BITEB.2022.101284. DOI: https://doi.org/10.1016/j.biteb.2022.101284

C. L. Hansen and D. Y. Cheong, “Agricultural Waste Management in Food Processing,” Handb. Farm, Dairy Food Mach. Eng., pp. 673–716, Jan. 2019, doi: 10.1016/B978-0-12-814803-7.00026-9. DOI: https://doi.org/10.1016/B978-0-12-814803-7.00026-9

R. A. M. Boloy et al., “Waste-to-Energy Technologies Towards Circular Economy: a Systematic Literature Review and Bibliometric Analysis,” Water, Air, and Soil Pollution, vol. 232, no. 7. Springer Science and Business Media Deutschland GmbH, Jul. 01, 2021, doi: 10.1007/s11270-021-05224-x. DOI: https://doi.org/10.1007/s11270-021-05224-x

J. N. Meegoda, B. Li, K. Patel, and L. B. Wang, “A review of the processes, parameters, and optimization of anaerobic digestion,” International Journal of Environmental Research and Public Health, vol. 15, no. 10. MDPI AG, Oct. 11, 2018, doi: 10.3390/ijerph15102224. DOI: https://doi.org/10.3390/ijerph15102224

S. K. Nuhu, J. A. Gyang, and J. J. Kwarbak, “Production and optimization of biomethane from chicken, food, and sewage wastes: The domestic pilot biodigester performance,” Clean. Eng. Technol., vol. 5, p. 100298, Dec. 2021, doi: 10.1016/J.CLET.2021.100298. DOI: https://doi.org/10.1016/j.clet.2021.100298

K. Kundu, S. Sharma, and T. R. Sreekrishnan, “Influence of Process Parameters on Anaerobic Digestion Microbiome in Bioenergy Production: Towards an Improved Understanding,” Bioenergy Research, vol. 10, no. 1. Springer New York LLC, pp. 288–303, Mar. 01, 2017, doi: 10.1007/s12155-016-9789-0. DOI: https://doi.org/10.1007/s12155-016-9789-0

G. A. W. Sudiartha, T. Imai, C. Mamimin, and A. Reungsang, “Effects of Temperature Shifts on Microbial Communities and Biogas Production: An In-Depth Comparison,” Fermentation, vol. 9, no. 7, 2023, doi: 10.3390/fermentation9070642. DOI: https://doi.org/10.3390/fermentation9070642

M. D. Manogaran et al., “Effect of Temperature on Co-Anaerobic Digestion of Chicken Manure and Empty Fruit Bunch: A Kinetic Parametric Study,” Sustain., vol. 15, no. 7, pp. 1–11, 2023, doi: 10.3390/su15075813. DOI: https://doi.org/10.3390/su15075813

Z. Deng, A. L. M. Ferreira, H. Spanjers, and J. B. van Lier, “Characterization of microbial communities in anaerobic acidification reactors fed with casein and/or lactose,” Appl. Microbiol. Biotechnol., vol. 106, no. 18, pp. 6301–6316, 2022, doi: 10.1007/s00253-022-12132-5. DOI: https://doi.org/10.1007/s00253-022-12132-5

N. Lv et al., “pH and hydraulic retention time regulation for anaerobic fermentation: Focus on volatile fatty acids production/distribution, microbial community succession and interactive correlation,” Bioresour. Technol., vol. 347, no. September 2021, p. 126310, 2022, doi: 10.1016/j.biortech.2021.126310. DOI: https://doi.org/10.1016/j.biortech.2021.126310

A. Nsair, S. Onen Cinar, H. Abu Qdais, and K. Kuchta, “Optimizing the performance of a large scale biogas plant by controlling stirring process: A case study,” Energy Convers. Manag., vol. 198, no. May, p. 111931, 2019, doi: 10.1016/j.enconman.2019.111931. DOI: https://doi.org/10.1016/j.enconman.2019.111931

D. F. V. G. RIVERA, ERIKA VIVIANA MORENO, “DISEÑO Y CONSTRUCCIÓN DE UN BIORREACTOR ESTERILIZABLE Y DE BAJO COSTO PARA EL ESTUDIO DE CRECIMIENTO DE MICROORGANISMOS,” UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS, 2017.

S. Elmoutez et al., “Design and operational aspects of anaerobic membrane bioreactor for efficient wastewater treatment and biogas production,” Environ. Challenges, vol. 10, 2023, doi: 10.1016/j.envc.2022.100671. DOI: https://doi.org/10.1016/j.envc.2022.100671

I. A. Cruz et al., “An overview of process monitoring for anaerobic digestion,” Biosyst. Eng., vol. 207, pp. 106–119, 2021, doi: 10.1016/j.biosystemseng.2021.04.008. DOI: https://doi.org/10.1016/j.biosystemseng.2021.04.008

K. Raghunandan, Textbooks in Telecommunication Engineering Introduction to Wireless Communications and Networks. 2023. DOI: https://doi.org/10.1007/978-3-030-92188-0

R. P. Pico, U. Rust, A. Radovici, and I. Culic, Getting Started with Secure Embedded Systems Getting Started with Secure Embedded. 2022.

N. Mohanta, R. K. Singh, J. K. Katiyar, and A. K. Sharma, “A Novel Fluid–Structure Interaction (FSI) Modeling Approach to Predict the Temperature Distribution in Single-Point Cutting Tool for Condition Monitoring During Turning Process,” Arab. J. Sci. Eng., vol. 47, no. 7, pp. 7995–8007, 2022, doi: 10.1007/s13369-021-05861-8. DOI: https://doi.org/10.1007/s13369-021-05861-8

J. Dena, J. Acevedo, V. Velasco, and V. Herrera, “Diseño y desarrollo de un sistema mecatrónico simple para el monitoreo de variables en la producción de biogás generado en un biodigestor hecho a la medida,” Innovación Y Desarro. Tecnológico, vol. 12, no. 2, pp. 50–59, 2020.

Y. Irawan, A. Febriani, R. Wahyuni, and Y. Devis, “Water quality measurement and filtering tools using Arduino Uno, PH sensor and TDS meter sensor,” J. Robot. Control, vol. 2, no. 5, pp. 357–362, 2021, doi: 10.18196/jrc.25107. DOI: https://doi.org/10.18196/jrc.25107

L. Bitjoka, A. T. Boum, M. Ndje, A. T. Boum, and J. Song-Manguelle, “Implementation of quadratic dynamic matrix control on arduino due ARM cortex-M3 microcontroller board Physics of Solar Cells and Systems View project Advanced Control for Motor Drives View project Implementation of quadratic dynamic matrix control on arduino due ARM cortex-M3 microcontroller board,” Artic. J. Eng. Technol., vol. 6, no. 2, pp. 682–695, 2017, [Online]. Available: https://www.researchgate.net/publication/318761954.

P. Sahu, S. Dixit, S. Mishra, and S. Srivastava, “Alcohol Detection based Engine Locking System using MQ-3 Sensor,” Int. Res. J. Eng. Technol., vol. 4, no. 4, pp. 979–981, 2017, [Online]. Available: https://www.irjet.net/archives/V4/i4/IRJET-V4I4203.pdf.

M. M. Rodríguez and P. A. Vannini, “Sustitución de importaciones de Software,” pp. 1–30, 2019, [Online]. Available: https://d1wqtxts1xzle7.cloudfront.net/59966792/informefinalusuaria20190709-18396-uxnh96-libre.pdf?1562682493=&response-content-disposition=inline%3B+filename%3DSustitucion_de_Importaciones_de_Software.pdf&Expires=1719250276&Signature=gybHLjt7tDCQr1v~qcvN4.

Published

2024-07-06

How to Cite

Vides Herrera, C. A., Pardo García, A., Ospino Castro, A. J., García Álvaro, A., & Crespo, I. G. (2024). Automation of an anaerobic digester with embedded system for the production of biogas from palm oil residue. COLOMBIAN JOURNAL OF ADVANCED TECHNOLOGIES, 2(44), 65–73. https://doi.org/10.24054/rcta.v2i44.2992

Most read articles by the same author(s)