Synthesis of nickel plates coated by electrodeposition with NixSy
DOI:
https://doi.org/10.24054/rcta.v1i47.4355Keywords:
nanotechnology, electrodeposition, layer engineering, sulfur, nickelAbstract
The present article aims to analyze the current, voltage, and time parameters involved in the electrodeposition of nickel sulfide nanolayers on pure nickel plates through a synthesis route based on variations in the number of cycles (1, 3, 4, and 7). Each cycle consists of four different voltage steps within the range of 0.54–2.4 V, which are repeated according to the corresponding number of cycles. A nickel nitrate hexahydrate solution (0.05 mol/L) and sodium thiosulfate pentahydrate (0.1 mol/L) were used as the electrolyte. The voltage values exhibit high stability, with oscillations of ±0.2 V, indicating that the employed methods provide a high degree of control over the electrodeposition process. Additionally, a mass gain in the range of 0.44–6.57 mg was obtained for the electrodepositions.
Downloads
References
K. Richardson et al., “Earth beyond six of nine planetary boundaries”, Science Advances, vol. 9, núm. 37, sep. 2023, doi:10.1126/sciadv.adh2458.
B. Sakschewski et al., Planetary Health Check 2025 A Scientific Assessment of the State of the Planet. 2025. doi:10.48485/pik.2025.017.
A. O. Oni, K. Anaya, T. Giwa, G. Di Lullo, y A. Kumar, “Comparative assessment of blue hydrogen from steam methane reforming, autothermal reforming, and natural gas decomposition technologies for natural gas-producing regions”, Energy Convers. Manag., vol. 254, p. 115245, 2022, doi:10.1016/j.enconman.2022.115245.
N. M Santhosh, S. Gupta, V. Shvalya, M. Kosicek, J. Zavasnik, y U. Cvelbar, “Advancing Oxygen Evolution Catalysis with Dual-Phase Nickel Sulfide Nanostructures”, Energy & Fuels, vol. 39, núm. 2, pp. 1375–1383, ene. 2025, doi:10.1021/acs.energyfuels.4c05182.
Y. Chen et al., “Nickel sulfide-based electrocatalysts for overall water splitting”, International Journal of Hydrogen Energy, vol. 48, núm. 72, pp. 27992–28017, ago. 2023, doi:10.1016/j.ijhydene.2023.04.023.
R.-C. Li et al., “One-step controlled electrodeposition nickel sulfides heterointerfaces favoring the desorption of hydroxyl groups for efficient hydrogen generation”, Rare Metals, vol. 43, núm. 9, pp. 4377–4386, 2024, doi:10.1007/s12598-024-02806-6.
Z. Wan et al., “Interface engineering of NiS/NiCo2S4 heterostructure with charge redistribution for boosting overall water splitting”, J. Colloid Interface Sci., vol. 653, pp. 795–806, 2024, doi:10.1016/j.jcis.2023.09.117.
S. Haghverdi Khamene, N. van Dalen, M. Creatore, y M. N. Tsampas, “Structural and Electrochemical Evolution of Nickel Sulfides During Alkaline Hydrogen Evolution Reaction”, ChemSusChem, dic. 2025, doi:10.1002/cssc.202501880.
C. Lyu et al., “Electrodeposition and Optimisation of Amorphous Ni x S y Catalyst for Hydrogen Evolution Reaction in Alkaline Environment”, Chemistry – A European Journal, vol. 30, núm. 66, nov. 2024, doi:10.1002/chem.202403030.
P. Wang et al., “Interface Engineering of NixSy@MnOxHy Nanorods to Efficiently Enhance Overall-Water-Splitting Activity and Stability”, Nano-Micro Letters, vol. 14, núm. 1, p. 120, dic. 2022, doi:10.1007/s40820-022-00860-2.
W. Tan y H. He, “One-step electrodeposition of W, Mo-Ni 3 S 2 /NF catalyst: an efficient hydrogen evolution electrode for alkaline media”, RSC Advances, vol. 15, núm. 47, pp. 39355–39367, 2025, doi:10.1039/D5RA07318A.
R. Li, P. Kuang, S. Wageh, A. A. Al-Ghamdi, H. Tang, y J. Yu, “Potential-dependent reconstruction of Ni-based cuboid arrays for highly efficient hydrogen evolution coupled with electro-oxidation of organic compound”, Chemical Engineering Journal, vol. 453, p. 139797, 2023, doi:10.1016/j.cej.2022.139797.
I. A. Poimenidis, M. Lykaki, N. Papakosta, P. A. Loukakos, N. Kallithrakas Kontos, y M. Konsolakis, “One-step electrodeposition of NiS heterostructures on nickel foam electrodes for hydrogen evolution reaction: On the impact of thiourea content”, Results Chem., vol. 6, p. 101216, 2023, doi10.1016/j.rechem.2023.101216.
D. Montgomery y C. St, Design and Analysis of Experiments, 9th Edition. 2022.
D. McKenzie, “Designing and analysing powerful experiments: practical tips for applied researchers”, Fiscal Studies, vol. 46, núm. 3, pp. 305–322, sep. 2025, doi:10.1111/1475-5890.70003.
C. Miao et al., “Facile Electrodeposition of Amorphous Nickel/Nickel Sulfide Composite Films for High-Efficiency Hydrogen Evolution Reaction”, ACS Appl. Energy Mater., vol. 4, núm. 1, pp. 927–933, ene. 2021, doi:10.1021/acsaem.0c02863.
B. Qiao et al., “NixSy/NF composites assembled by sulfidation of nickel foam (NF) for highly effective capture of iodine”, Chemical Engineering Journal, vol. 479, p. 147864, 2024, doi:10.1016/j.cej.2023.147864.
S. Esmailzadeh, T. Shahrabi, Gh. Barati Darband, y Y. Yaghoubinezhad, “Pulse electrodeposition of nickel selenide nanostructure as a binder-free and high-efficient catalyst for both electrocatalytic hydrogen and oxygen evolution reactions in alkaline solution”, Electrochim. Acta, vol. 334, p. 135549, 2020, doi:10.1016/j.electacta.2019.135549.
B. Zhong, S. Wan, P. Kuang, B. Cheng, L. Yu, y J. Yu, “Crystalline/amorphous Ni/NixSy supported on hierarchical porous nickel foam for high-current-density hydrogen evolution”, Appl. Catal. B, vol. 340, p. 123195, ene. 2024, doi:10.1016/j.apcatb.2023.123195.
P. Kotei, N. Boadi, S. Saah, y M. Mensah, “Synthesis of Nickel Sulfide Thin Films and Nanocrystals from the Nickel Ethyl Xanthate Complex”, Advances in Materials Science and Engineering, vol. 2022, pp. 1–10, jul. 2022 doi:10.1155/2022/6587934.
Y.-K. Hsu, A. Mondal, Y.-Z. Su, Z. Sofer, K. Shanmugam Anuratha, y J.-Y. Lin, “Highly hydrophilic electrodeposited NiS/Ni3S2 interlaced nanosheets with surface-enriched Ni3+ sites as binder-free flexible cathodes for high-rate hybrid supercapacitors”, Appl. Surf. Sci., vol. 579, p. 151923, 2022, doi:10.1016/j.apsusc.2021.151923.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Esteban Quintero Moreno, Héctor Darío Sánchez Londoño, Edwin García Quintero

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.





