Arquitectura para implementación de servicios de video sobre redes móviles mediante redes definidas por software y segmentación de red

Autores/as

DOI:

https://doi.org/10.24054/rcta.v2i42.2651

Palabras clave:

Arquitectura, SDN, SDR, Segmentación, Videostreaming

Resumen

El presente artículo propone el diseño de una arquitectura para el despliegue de servicios de videostreaming sobre una infraestructura de redes móviles teniendo en cuenta los conceptos de redes definidas por software, radio definida por software y segmentación de red, con el objetivo de que sea flexible y escalable. Como principal contribución de este artículo, se presenta una arquitectura para el despliegue y consumo de servicios de videostreaming sobre infraestructura de red móvil basada en enfoques de redes definidas por software y segmentación de red. La arquitectura propuesta se especificó a través de la vista funcional y la vista de implementación, las cuales definieron los módulos funcionales extremo a extremo del servicio de videostreaming, así como las tecnologías utilizadas para la implementación de estas funcionalidades. El prototipo obtenido como instancia de la arquitectura propuesta permitió demostrar que puede ser considerado como un referente en diferentes entornos académicos y empresariales

Citas

Akamai CDN. (2020). Index of /129021/dash. https://dash.akamaized.net/

Barakabitze, A. A., Ahmad, A., Mijumbi, R., & Hines, A. (2020). 5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges. Computer Networks, 167, 106984. https://doi.org/10.1016/j.comnet.2019.106984

Bonati, L., Polese, M., D’Oro, S., Basagni, S., & Melodia, T. (2020). Open, Programmable, and Virtualized 5G Networks: State-of-the-Art and the Road Ahead. Computer Networks, 182, 107516. https://doi.org/10.1016/J.COMNET.2020.107516

Capilla, R., Zimmermann, O., Carrillo, C., & Astudillo, H. (2020). Teaching Students Software Architecture Decision Making (pp. 231–246). https://doi.org/10.1007/978-3-030-58923-3_16

Castañeda Herrera, L. M., Campo-Muñoz, W. Y., & Torres, A. D. (2021). Video Streaming Service Identification on Software-Defined Networking. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 16(5). https://doi.org/10.15837/ijccc.2021.5.4258

Chanchí, G. E., Saba, M., & Monroy, M. (2020). Propuesta de una arquitectura software basada en realidad virtual para el desarrollo de aplicaciones de turismo cultural. Revista Iberica de Sistemas y Tecnologías de La Información, E36, 157–170. https://search.proquest.com/openview/b430732f75468b4f06bba1d323941f99/1?pq-origsite=gscholar&cbl=1006393

Chavez Picon, J. L., Campo, W. Y., & Golondrino Chanchí, G. E. (2021). Construcción de un banco de pruebas para redes 5G basado en SDN y SDR. Revista Ibérica de Sistemas e Tecnologias de Informação, E42, 425–437.

Condoluci, M., & Mahmoodi, T. (2018). Softwarization and virtualization in 5G mobile networks: Benefits, trends and challenges. Computer Networks, 146, 65–84. https://doi.org/10.1016/j.comnet.2018.09.005

DASH Industry Forum. (2012). Software. https://dashif.org/software/

Estrada-Solano, F., Ordonez, A., Granville, L. Z., & Caicedo Rendon, O. M. (2017). A framework for SDN integrated management based on a CIM model and a vertical management plane. Computer Communications, 102, 150–164. https://doi.org/10.1016/j.comcom.2016.08.006

Ettus Research. (2023). https://kb.ettus.com/B200/B210/B200mini/B205mini.

Flores Moyano, R., Fernandez, D., Merayo, N., Lentisco, C. M., & Cardenas, A. (2020). NFV and SDN-Based Differentiated Traffic Treatment for Residential Networks. IEEE Access, 8, 34038–34055. https://doi.org/10.1109/ACCESS.2020.2974504

Ge, C., Wang, N., Selinis, I., Cahill, J., Kavanagh, M., Liolis, K., Politis, C., Nunes, J., Evans, B., Rahulan, Y., Nouvel, N., Boutin, M., Desmauts, J., Arnal, F., Watts, S., & Poziopoulou, G. (2019). QoE-Assured Live Streaming via Satellite Backhaul in 5G Networks. IEEE Transactions on Broadcasting, 65(2), 381–391. https://doi.org/10.1109/TBC.2019.2901397

Ghosh, A., Maeder, A., Baker, M., & Chandramouli, D. (2019). 5G Evolution: A View on 5G Cellular Technology beyond 3GPP Release 15. IEEE Access, 7, 127639–127651. https://doi.org/10.1109/ACCESS.2019.2939938

Habibi, M. A., Nasimi, M., Han, B., & Schotten, H. D. (2019). A Comprehensive Survey of RAN Architectures Toward 5G Mobile Communication System. IEEE Access, 7, 70371–70421. https://doi.org/10.1109/ACCESS.2019.2919657

Hayaty, M., Wahyuni, S. N., Istiningsih, Putra, A. D., Maemunah, M., Satya, B., & Nurani, D. (2021). Pelatihan Pembuatan Konten Pembelajaran Menggunakan Open Broadcast Software. Abdiformatika: Jurnal Pengabdian Masyarakat Informatika, 1(2), 61–67. https://doi.org/10.25008/abdiformatika.v1i2.142

Izydorczyk, T., Tavares, F. M. L., Berardinelli, G., & Mogensen, P. (2019). A USRP-Based Multi-Antenna Testbed for Reception of Multi-Site Cellular Signals. IEEE Access, 7, 162723–162734. https://doi.org/10.1109/ACCESS.2019.2952094

Khan, M. U., Garcia-Armada, A., & Escudero-Garzas, J. J. (2020). Service-Based Network Dimensioning for 5G Networks Assisted by Real Data. IEEE Access, 8, 129193–129212. https://doi.org/10.1109/ACCESS.2020.3009127

Kong, S., Lu, M., Li, L., & Gao, L. (2020). Runtime Monitoring of Software Execution Trace: Method and Tools. IEEE Access, 8, 114020–114036. https://doi.org/10.1109/ACCESS.2020.3003087

Kua, J., Armitage, G., & Branch, P. (2017). A Survey of Rate Adaptation Techniques for Dynamic Adaptive Streaming over HTTP. IEEE Communications Surveys and Tutorials, 19(3), 1842–1866. https://doi.org/10.1109/COMST.2017.2685630

Mohammadkhan, A., Ramakrishnan, K. K., & Jain, V. A. (2020). CleanG - Improving the Architecture and Protocols for Future Cellular Networks with NFV. IEEE/ACM Transactions on Networking, 28(6), 2559–2572. https://doi.org/10.1109/TNET.2020.3015946

Nallappan, K., Guerboukha, H., Nerguizian, C., & Skorobogatiy, M. (2018). Live streaming of uncompressed HD and 4K videos using terahertz wireless links. IEEE Access, 6, 58030–58042. https://doi.org/10.1109/ACCESS.2018.2873986

Osmocom.org. (2017). pysim. https://gitea.osmocom.org/sim-card/pysim

Papa, A., Jano, A., Ayvasik, S., Ayan, O., Gursu, H. M., & Kellerer, W. (2022). User-Based Quality of Service Aware Multi-Cell Radio Access Network Slicing. IEEE Transactions on Network and Service Management, 19(1), 756–768. https://doi.org/10.1109/TNSM.2021.3122230

Perez, S. C., Facchini, H. A., Marrone, L., & Hidalgo, F. A. (2017). Experimental Study of Multicast and Unicast Video Traffic in WAN Links. IEEE Latin America Transactions, 15(10), 1847–1855. https://doi.org/10.1109/TLA.2017.8071226

Quiroga, Montoya, E. A., Fernando, S., Colorado, J., Yesid, W., Muñoz, C., Elías, G., & Golondrino, C. (2017). Propuesta de una Arquitectura para Agricultura de Precisión Soportada en IoT. RISTI: Revista Ibérica de Sistemas e Tecnologias de Informação, 24, 39–56. https://doi.org/10.17013/risti.24.39-56

Saltarin, J., Bourtsoulatze, E., Thomos, N., & Braun, T. (2017). Adaptive Video Streaming with Network Coding Enabled Named Data Networking. IEEE Transactions on Multimedia, 19(10), 2182–2196. https://doi.org/10.1109/TMM.2017.2737950

Shayea, I., Ergen, M., Azmi, M. H., Nandi, D., El-Salah, A. A., & Zahedi, A. (2020). Performance Analysis of Mobile Broadband Networks with 5G Trends and Beyond: Rural Areas Scope in Malaysia. IEEE Access, 8, 65211–65229. https://doi.org/10.1109/ACCESS.2020.2978048

Song, S., Jung, J., Choi, M., Lee, C., Sun, J., & Chung, J. M. (2019). Multipath Based Adaptive Concurrent Transfer for Real-Time Video Streaming over 5G Multi-RAT Systems. IEEE Access, 7, 146470–146479. https://doi.org/10.1109/ACCESS.2019.2945357

Wiranata, F. A., Shalannanda, W., Mulyawan, R., & Adiono, T. (2020). Automation of Virtualized 5G Infrastructure Using Mosaic 5G Operator over Kubernetes Supporting Network Slicing. 2020 14th International Conference on Telecommunication Systems, Services, and Applications (TSSA, 1–5. https://doi.org/10.1109/TSSA51342.2020.9310895

Xiao, A., Huang, X., Wu, S., Chen, H., & Ma, L. (2020). Traffic-Aware Rate Adaptation for Improving Time-Varying QoE Factors in Mobile Video Streaming. IEEE Transactions on Network Science and Engineering, 7(4), 2392–2405. https://doi.org/10.1109/TNSE.2020.3013533

Yan, H., Lin, T. H., Gao, C., Li, Y., & Jin, D. (2018). On the Understanding of Video Streaming Viewing Behaviors Across Different Content Providers. IEEE Transactions on Network and Service Management, 15(1), 444–457. https://doi.org/10.1109/TNSM.2017.2785298

Yang, P., Baracchi, D., Iuliani, M., Shullani, D., Ni, R., Zhao, Y., & Piva, A. (2020). Efficient Video Integrity Analysis through Container Characterization. IEEE Journal on Selected Topics in Signal Processing, 14(5), 947–954. https://doi.org/10.1109/JSTSP.2020.3008088

Zhang, S. (2019). An Overview of Network Slicing for 5G. IEEE Wireless Communications, 26(3), 111–117. https://doi.org/10.1109/MWC.2019.1800234

Cómo citar

Chavez-Picon, J. L., Campo-Muñoz, W. Y., & Chanchí-Golondrino, G. E. (2013). Arquitectura para implementación de servicios de video sobre redes móviles mediante redes definidas por software y segmentación de red. REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA), 2(42), 33–41. https://doi.org/10.24054/rcta.v2i42.2651 (Original work published 11 de diciembre de 2023)