Optimization of pasture evaluation through the implementation of multispectral imaging and unmanned aerial vehicle

Authors

DOI:

https://doi.org/10.24054/rcta.v1i43.2850

Keywords:

Multispectral images, unmanned aerial vehicle, Reflectance analysis, Remote sensors, Vegetation indices, NDVI, precision agriculture

Abstract

This article develops a way to optimize pasture evaluation using unmanned aerial vehicles (UAVs) and multispectral image analysis. The research was carried out in the Municipality of Pamplona, Colombia, with the aim of understanding and documenting the growth and evolution of pasture in agricultural areas. The methodology used in the research included zoning the terrain to identify favorable conditions for the study, ensuring that suitable areas existed to observe pasture development and facilitate access to experimental instruments. Important aspects such as obtaining GPS points on the ground to create polygons that are arranged as the study area are highlighted, allowing for the planning of UAV flight missions, which in turn lead to the use of autonomous flight management software. The acquisition of multispectral images is made possible through the use of multispectral cameras integrated into the UAV, capable of recording information in multiple spectral bands within and outside the visible spectrum, such as near-infrared and red edge. Statistical analysis provided a detailed insight into agricultural conditions by revealing significant correlations between the Normalized Difference Vegetation Index (NDVI) and various soil parameters such as potassium (K) and phosphorus (P). This innovative method provides accurate data and visualizations that assist in making decisions regarding sustainable pasture management in the region.

Downloads

Download data is not yet available.

References

Food and Agriculture Organization of the United Nations, “Scaling up Climate Ambition on Land Use and Agriculture through Nationally Determined Contributions and National Adaptation Plans (SCALA),” Rome, Italy, 2024.

R. Cueto Morelo, J. Atencio Flórez, and J. E. Gómez Gómez, “Sistema de identificación enfermedades y plagas en el cultivo de sandía,” REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA), vol. 2, no. 42, pp. 96–107, Dec. 2023, doi: 10.24054/rcta.v2i42.2674.

A. Cilluffo and N. Ruiz, “World’s population is projected to nearly stop growing by the end of the century,” Pew Research Center.

J. D. Herrera Galviz and J. C. Hernández Criado, “Análisis de sanidad vegetal de cultivos próximos al distrito de riego asudra del municipio de ábrego – norte de santander, a partir de imágenes de drone,” REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA), vol. 1, no. 35, pp. 16–25, Jul. 2023, doi: 10.24054/rcta.v1i35.37.

L. Deng, Z. Mao, X. Li, Z. Hu, F. Duan, and Y. Yan, “UAV-based multispectral remote sensing for precision agriculture: A comparison between different cameras,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 146, pp. 124–136, 2018, doi: 10.1016/j.isprsjprs.2018.09.008.

N. Bagheri and J. Kafashan, “UAV-based remote sensing in orcha-forest environment; diversity of research, used platforms and sensors,” Remote Sens Appl, vol. 32, p. 101068, 2023, doi: 10.1016/j.rsase.2023.101068.

L. D. Gualdrón Guerrero, O. E. Gualdrón Guerrero, and M. Maestre Delgado, “Evolución y recuperación de pasturas para optimizar los rendimientos nutricionales de los semovientes interpretando los índices de vegetación normalizada usando levantamientos multiespectrales,” REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA), vol. 2, no. 42, pp. 105–114, Dec. 2023, doi: 10.24054/rcta.v2i42.2701.

A. D. Boursianis et al., “Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in smart farming: A comprehensive review,” Internet of Things, vol. 18, p. 100187, 2022, doi: 10.1016/j.iot.2020.100187.

S. Liu et al., “UAV multispectral images for accurate estimation of the maize LAI considering the effect of soil background,” International Journal of Applied Earth Observation and Geoinformation, vol. 121, p. 103383, 2023, doi: 10.1016/j.jag.2023.103383.

G. Dhanush, N. Khatri, S. Kumar, and P. K. Shukla, “A comprehensive review of machine vision systems and artificial intelligence algorithms for the detection and harvesting of agricultural produce,” Sci Afr, vol. 21, p. e01798, 2023, doi: 10.1016/j.sciaf.2023.e01798.

P. H. A. Martins et al., “Estimating spray application rates in cotton using multispectral vegetation indices obtained using an unmanned aerial vehicle,” Crop Protection, vol. 140, p. 105407, 2021, doi: 10.1016/j.cropro.2020.105407.

Q. Cao et al., “Discrimination of tea plant variety using in-situ multispectral imaging system and multi-feature analysis,” Comput Electron Agric, vol. 202, p. 107360, 2022, doi: 10.1016/j.compag.2022.107360.

E. Cordero, L. Longchamps, R. Khosla, and D. Sacco, “Joint measurements of NDVI and crop production data-set related to combination of management zones delineation and nitrogen fertilisation levels,” Data Brief, vol. 28, p. 104968, 2020, doi: 10.1016/j.dib.2019.104968.

Y. Zhang et al., “Two-step ResUp&Down generative adversarial network to reconstruct multispectral image from aerial RGB image,” Comput Electron Agric, vol. 192, p. 106617, Jan. 2022, doi: 10.1016/j.compag.2021.106617.

D. A. Pelaez Carrillo, O. E. Gualdron Guerrero, and A. E. Capacho Mogollon, Soluciones tecnológicas para el desarrollo de la agricultura de precisión a través de imágenes multiespectrales, 1st ed. Pamplona, Colombia: Universidad de Pamplona, 2023.

C. Davidson, V. Jaganathan, A. N. Sivakumar, J. M. P. Czarnecki, and G. Chowdhary, “NDVI/NDRE prediction from standard RGB aerial imagery using deep learning,” Comput Electron Agric, vol. 203, p. 107396, Dec. 2022, doi: 10.1016/J.COMPAG.2022.107396.

T. Duan, S. C. Chapman, Y. Guo, and B. Zheng, “Dynamic monitoring of NDVI in wheat agronomy and breeding trials using an unmanned aerial vehicle,” Field Crops Res, vol. 210, pp. 71–80, 2017, doi: 10.1016/j.fcr.2017.05.025.

M. A. Kaljahi et al., “An automatic zone detection system for safe landing of UAVs,” Expert Syst Appl, vol. 122, pp. 319–333, 2019, doi: 10.1016/j.eswa.2019.01.024.

S. V Gaikwad, A. D. Vibhute, K. V Kale, and S. C. Mehrotra, “An innovative IoT based system for precision farming,” Comput Electron Agric, vol. 187, p. 106291, 2021, doi: 10.1016/j.compag.2021.106291.

H. Li, G. Li, Y. Ye, and L. Lin, “A high-efficiency acquisition method of LED-multispectral images based on frequency-division modulation and RGB camera,” Opt Commun, vol. 480, p. 126492, 2021, doi: 10.1016/j.optcom.2020.126492.

Published

2024-05-08

How to Cite

[1]
D. A. Pelaez Carrillo, O. E. Gualdron Guerrero, and I. Torres Chavez, “Optimization of pasture evaluation through the implementation of multispectral imaging and unmanned aerial vehicle”, RCTA, vol. 1, no. 43, pp. 155–162, May 2024.

Most read articles by the same author(s)

1 2 > >>