Consumo de energías renovables y sus principales determinantes en países desarrollados y emergentes, 1996-2020
DOI:
https://doi.org/10.24054/face.v24i3.3324Palabras clave:
Energías renovables, emisiones de CO2, I&D, IED y datos panelResumen
El presente trabajo tiene por objetivo analizar la relación entre el consumo de energías renovables (CER), el gasto en Investigación y Desarrollo (I&D), la generación de emisiones de CO2 (CO2), el PIB y la entrada de Inversión Extranjera Directa (IED) en los países miembros del G7, BRICS y México durante el periodo 1996-2020. A través de modelos econométricos de datos de panel robustos, se prueba empíricamente que la I&D, CO2, el PIB y la IED tienen una relación de equilibrio de largo plazo con el consumo de energías renovables. A través de los estimadores FMOLS y DOLS se demuestra un impacto positivo significativo de I&D, PIB y IED en CER, mientras que CO2 lo demuestra con un efecto negativo significativo.
Descargas
Citas
Abdouli, M. y Hammami, S. (2017). Economic growth, FDI inflows and their impact on the environment: an empirical study for the MENA countries. Quality & Quantity: International Journal of Methodology, 51(1). https://doi.org/10.1007/s11135-015-0298-6
Adams, S., Adom, P.K. y Klobodu, E.K.M. (2016). Urbanization, regime type and durability, and environmental degradation in Ghana. Environ, Sci. Pollut. Control Ser, 23(2016). https://doi.org/10.1007/s11356-016-7513-4
Ahmed, S.F., Zayed, N.M., Islam, K.M.A. y Nitsenko, V. (2022). Investigating the impact of re consumption on co2 emissions: evidence from the SAARC countries. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3(2022). https://doi.org/10.33271/nvngu/2022-3/107
Alam, M.S., Apergis, N., Paramati, S.R. y Fang, J. (2021). The impacts of R&D investment and stock markets on clean-energy consumption and CO2 emissions in OECD economies. International Journal of Finance and Economics, 26(4). https://doi.org/10.1002/ijfe.2049
Baltagi, B.H. (1995). Econometric Analysis of Panel Data. John Wiley and Sons.
Banco Mundial (BM). (2022). CO2 emissions (kt) – México. https://data.worldbank.org/indicator/EN.ATM.CO2E.KT?locations=MX
Banco Mundial (BM). (2022). Renewable energy consumption (% of total final energy consumption) – Mexico. https://data.worldbank.org/indicator/EG.FEC.RNEW.ZS?locations=MX
Banco Mundial (BM). (2023). The World Bank in Mexico, Mexico Overview. https://www.worldbank.org/en/country/mexico/overview
Banco Mundial (BM). (2023). World Development Indicators. https://databank.worldbank.org/source/world-development-indicators
Bilgili, F., Kocak, E. y Bulut, Ü. (2016). The dynamic impact or renewable energy consumption on CO2 emissions: A revisited Environmental Kuznets Curve approach. Renewable and Sustainable Energy Revies, 54(2016). https://doi.org/10.1016/j.rser.2015.10.080
BRICS. (2021). Evolution of BRICS. https://brics2021.gov.in/about-brics
Caglar, A.E. y Ulug, M. (2022). The role of government spending on energy efficiency R&D budgets in the green transformation process: insight from the top-five countries. Environmental Science and Pollution Research, 29(2022). https://doi.org/10.1007/s11356-022-21133-w
Chang, T., Gatwabuyege, F., Gupta, R., Inglesi-Lotz, R., Manjezi, N.C. y Simo-Kengne, B. D. (2014). Causal relationship between nuclear energy consumption and economic growth in G6 countries: Evidence from panel Granger causality tests. Progress in Nuclear Energy, 77(2014). https://doi.org/10.1016/j.pnucene.2014.07.006
Chien, T. y Hu, J. (2008). Renewable energy: An efficient mechanism to improve GDP. Energy Policy, 36(8). https://doi.org/10.1016/j.enpol.2008.04.012
Dumitrescu, E-I. y Hurlin, C. (2012). Testing for Granger non-causality in heterogeneous panels. Economic Modeling, 29(4). https://doi.org/10.1016/j.econmod.2012.02.014
Energy Information Administration (EIA). (2023). International Data. https://www.eia.gov/international/data/world
Fisher-Vanden, K., Jefferson, G. H., Liu, H. y Tao, Q. (2004). What is driving China's decline in energy intensity? Resource and Energy Economics, 26(1). https://doi.org/10.1016/j.reseneeco.2003.07.002.
Gómez, M. y Rodríguez, J.C. (2019). Energy Consumption and Financial Development in NAFTA Countries, 1971-2015. Applied Sciences, 9(2). https://doi.org/10.3390/app9020302
Granger, C.W.J. (1988). Some recent development in a concept of causality. Journal of Econometrics, 39(1-2). https://doi.org/10.1016/0304-4076(88)90045-0
Idris, F.W., Seraj, M. y Özdeser, H. (2022). Renewable energy consumption, CO2 emissions and trade balance nexus in OECD countries: evidence from ARDL bounds approach. International Journal of Energy Sector Management 17(4). https://doi.org/10.1108/IJESM-02-2022-0009
Im, K. S., Pesaran, M. H. y Shin, Y. (2003). Testing for unit roots in heterogeneous panels. Journal of Econometrics, 115(1). https://doi.org/10.1016/S0304-4076(03)00092-7
Inglesi, R. (2017). Social rate of return to R&D on various energy technologies: Where should we invest more? A study of G7 countries. Energy Policy, 101. https://doi.org/10.1016/j.enpol.2016.10.043
International Energy Agency (IEA). (2021). Global Energy Review 202, CO2 emissions. https://www.iea.org/reports/global-energy-review-2021/co2-emissions
International Energy Agency (IEA). (2022). Achieving Net Zero Heavy Industry Sectors in G7 Members. https://www.iea.org/reports/achieving-net-zero-heavy-industry-sectors-in-g7-members
Ito, K. (2017). CO2 emissions, renewable and non-renewable energy consumption, and economic growth: Evidence from panel data for developing countries. International Economics, 151. https://doi.org/10.1016/j.inteco.2017.02.001
Jokela, J. y Saul, A. (2023). The Changing dynamic of the G7, G20 and BRICS. FIIA Briefing Paper, 04/361. https://www.fiia.fi/wp-content/uploads/2023/04/bp361_the-changing-dynamics-of-the-g7-g20-and-brics.pdf
Kao, C. (1999). Spurious Regression and Residual Based Tests for Cointegration in Panel Data. Journal of Econometrics, 90(1). https://doi.org/10.1016/S0304-4076(98)00023-2
Kao, C. y Chiang, M.H. (2001). On the estimation and inference of a cointegrated regression in panel data. En B.H. Baltagi, T.B. Fomby, y R. Carter (Coord). Nonstationary Panels, Panel Cointegration, and Dynamic Panels (Advances in Econometrics, Vol. 15) (p.179–222). Emerald Group Publishing Limited.
Khan, A., Chenggang, Y., Hussain, J. y Kui, Z. (2021). Impact of technological innovation, financial development and foreign direct investment on renewable energy, non-renewable energy and the environment in belt & Road Initiative countries. Renewable Energy 171(2021). https://doi.org/10.1016/j.renene.2021.02.075
Khattak, S.I., Ahmad, M., Haq, Z., Shaofu, G. y Hang, J. (2022). On the goals of sustainable production and the conditions of environmental sustainability: Does cyclical innovation in green and sustainable technologies determine carbon dioxide emissions in G-7 economies. Sustainable Production and Consumption, 29. https://doi.org/10.1016/j.spc.2021.10.022
Kose, E., Burmaoglu, S. y Kabak, M. (2013). Grey relational analysis between energy consumption and economic growth. Grey Systems: Theory and Application, 3(3). https://doi.org/10.1108/GS-06-2013-0010
Levin, A., Lin, C. y Chu, C. (2002). Unit root tests in panel data: Asymptotic and finite-sample properties. Journal of Econometrics, 108(1). https://doi.org/10.1016/S0304-4076(01)00098-7
Maddala, G. S. y Wu, S. (1999). A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test. Oxford Bulletin of Economics and Statistics, 61. http://dx.doi.org/10.1111/1468-0084.61.s1.13
Mielnik, O. y Goldemberg, J. (2002). Foreign direct investment and decoupling between energy and gross domestic product in developing countries. Energy Policy, 30(2). https://doi.org/10.1016/S0301-4215(01)00080-5
Pedroni, P. (2001). Fully modified OLS for heterogeneous cointegrated panels. En B.H. Baltagi, T.B. Fomby, y R. Carter (Coord). Nonstationary Panels, Panel Cointegration, and Dynamic Panels (Advances in Econometrics, Vol. 15) (p.93–130). Emerald Group Publishing Limited.
Pesaran, M. H., Shin, Y. y Smith, R.J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics,16(3). https://doi.org/10.1002/jae.616
Pesaran, M. H. (2004). General diagnostic tests for cross-section dependence in panels. Working Paper in Economics No.0435. https://doi.org/10.17863/CAM.5113
Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross-section dependence. Journal of Applied Econometrics, 22(2). https://doi.org/10.1002/jae.951
Phillips, P. C. B. y Moon, H. R. (1999). Linear regression limit theory for non-stationary panel data. Econometrica, 67(5). http://www.jstor.org/stable/2999513
Riti, J. S., Song, D., Shu, Y. y Kamah, M. (2017). Decoupling CO2 emission and economic growth in China: Is there consistency in estimation results in analyzing environmental Kuznets curve? Journal of Cleaner Production, 166(2017). https://doi.org/10.1016/j.jclepro.2017.08.117
Sadorsky, P. (2009). Renewable energy consumption, co2 emissions and oil prices in the g7 countries. Energy Economics, 31(3). https://doi.org/10.1016/j.eneco.2008.12.010
Sadorsky, P. (2010). The impact of financial development on energy consumption in emerging economies. Energy Policy, 38(5). https://doi.org/10.1016/j.enpol.2009.12.048
Samour, A., Adebayo, T. S., Agyekum, E. B., Khan, B. y Kamel, S. (2023). Insights from BRICS-T economies on the impact of human capital and renewable electricity consumption on environmental quality. Scientific Reports, 13(5245). https://doi.org/10.1038/s41598-023-32134-1
Sarkodie, S. A., Adams, S. y Leirvik, T. (2020). Foreign direct investment and renewable energy in climate change mitigation: Does governance matter? Journal of Cleaner Production, 263. https://doi.org/10.1016/j.jclepro.2020.121262
Sbia, R., Shahbaz, M. y Hamdi, H. (2014). A contribution of foreign direct investment, clean energy, trade openness, carbon emissions and economic growth to energy demand in UAE. Economic Modelling, 36. https://doi.org/10.1016/j.econmod.2013.09.047
Secretaría de Energía (SENER). (2021). Sistema de Información Energética. https://sie.energia.gob.mx/bdiController.do?action=cuadro&cvecua=IE0C01
Talan, A., Rao, A., Sharma, G. D., Apostu, S-A. y Abbas, S. (2023). Transition towards clean energy consumption in G7: Can financial sector, ICT and democracy help. Resources Policy, 82. https://doi.org/10.1016/j.resourpol.2023.103447
The Energy Progress Report (2021). Tracking SDG 7, Progress Towards Sustainable Energy. https://trackingsdg7.esmap.org/
Tiba, S., Omri, A. y Frikha, M. (2016). The four-way linkages between renewable energy, environmental quality, trade and economic growth: A comparative analysis between high and middle-income countries. Energy Systems, 7. https://doi.org/10.1007/s12667-015-0171-7
Tudor, C. y Sova, R. (2021). On the Impact of GDP per Capita, Carbon Intensity and Innovation for Renewable Energy Consumption: Worldwide Evidence. Energies, 14(19). https://doi.org/10.3390/en14196254
United Nations Conference on Trade and Development (UNCTAD). (2023). BRICS Investment Report 2023. https://unctad.org/system/files/official-document/diae2023d1_en.pdf
Wang, Q., Li, S. y Pisarenko, Z. (2020). Heterogeneous effects of energy efficiency, oil Price, environmental pressure, R&D investment and policy on renewable energy – evidence from the G20 countries. Energy Policy, 209. https://doi.org/10.1016/j.energy.2020.118322
Wiesenthal, T., Leduc, G., Haegeman, K. y Schwarz, H-G. (2012). Bottom-up estimation of industrial and public R&D investment by technology in support of policy-making: The case of selected low-carbon energy technologies. Research Policy, 41(1). https://doi.org/10.1016/j.respol.2011.08.007
Zhu, Z., Liao, H. y Liu, L. (2021). The role of public energy R&D in energy conservation and transition: Experiences from IEA countries. Renewable and Sustainable Energy Reviews, 143. https://doi.org/10.1016/j.rser.2021.110978
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 FACE: Revista de la Facultad de Ciencias Económicas y Empresariales
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.