Aproximación y Simulación de Señal Perteneciente a la Clase de Lipschitz Generalizada Ponderada ...
Approximation and Simulation of Signal Belonging to the Generalized Weighted Lipschitz Class by ...
DOI:
https://doi.org/10.24054/bistua.v22i2.2842Palabras clave:
Generalized weighted Lipschitz class, Conjugate Fourier series, Holder inequalityResumen
En este estudio, la conocida serie conjugada de Fourier, tradicionalmente sumable mediante varios métodos individuales, demuestra una mayor velocidad de convergencia y una mejor aproximación de señales al aplicarse una transformación de producto. Este trabajo tiene como objetivo establecer un nuevo teorema para aproximar señales dentro de una clase específica de funciones, utilizando la sumabilidad en producto de series conjugadas de Fourier. Además, se presentan una serie de ejemplos ilustrativos para validar el método de sumabilidad propuesto y destacar su comportamiento de convergencia. Los resultados se respaldan mediante simulaciones realizadas en programación MATLAB.
Descargas
Citas
Thakur, A. K., Singh, G. K., and Dubey, A. 2022. Approximation of conjugate function related to Lipschitz and weighted class by product summability. Turkish Journal of Computer and Mathematics Education, 13(2), 346-353.
Rathore, A., and Singh, U. 2020. On the degree of approximation of functions in a weighted Lipschitz class by almost matrix summability method. The Journal of Analysis, 28(1), 21-33.
Zygmund, A., 1959. Trigonometric Series. Cambridge University Press.
Borwein, D., 1958. On products of sequences. Journal of the London Mathematical Society, 1(3), 352-357.
Rhoades, B.E., Ozkoklu, K. and Albayrak, I., 2011. On the degree of approximation of functions belonging to a Lipschitz class by Hausdorff means of its Fourier series. Applied Mathematics and Computation, 217(16), 6868-6871.
Hardy, G.H., 1949. Divergent series. Oxford University Press.
Bor, H., 2016. Some new results on absolute Riesz summability of infinite series and Fourier series. Positivity, 20(3), 599-605.
Bor, H., 2015. Some new results on infinite series and Fourier series. Positivity, 19(3), 467-473.
Khan, H.H., 1982. A note on a theorem of Izumi. Comm. Fac. Maths. Ankara, 31, 123-127.
Khan, H. H., 1974. On degree of approximation to a functions belonging to the weighted -class. Aligarh Bull. of Math., 3(4), 83-88.
Nigam, H. K., 2014. Approximation of conjugate function belonging to lipschitzs class by product means. International Journal of Mathematics Research, 15-26.
Rathore, H. L. and Shrivastava, U. K., 2012. Approximation of function belonging to weighted class by product means of its Fourier series. International Journal of Scientific and Research Publications, 6(2).
Qureshi, K., 1982. On the degree of approximation of a function belonging to weighted class. Indian Journal of Pure and Applied Mathematics, 13, 471-475.
Lal, S. and Nigam, H.K., 2001. Degree of approximation of conjugate of a function belonging to Lip class by matrix summability means of conjugate Fourier series. International Journal of Mathematics and Mathematical Sciences, 27(9), 555-563.
Mishra, V. N., Khatri, K. and Mishra, L. N., 2012. Approximation of functions belonging to lipschitzs class byproduct summability of conjugate series of Fourier series. Journal of Inequalities and Applications, 296, 10 p.
Krasniqi, X.Z., 2015. On the Degree of Approximation of Functions Belonging to the Lipschitz Class by product summability Means. Khayyam Journal of Mathematics, 1(2), 243-252.
Deger, U., 2016. On approximation to functions in the weighted class by a new matrix mean. Novi Sad J. Math, 46(1), 1-14.
Singh, U., 2021. On the trigonometric approximation of functions in a weighted Lipschitz class. The Journal of Analysis, 29, 325-335.
Singh, U. and Srivastava, S.K., 2014. Approximation of conjugate of functions belonging to weighted Lipschitz class weighted mean by Hausdorff means of conjugate Fourier series. Journal of Computational and Applied Mathematics, 259, 633-640.
Archivos adicionales
Publicado
Versiones
- 2024-11-03 (2)
- 2024-11-02 (1)
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 © Autores; Licencia Universidad de Pamplona
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
© Autores; Licencia Universidad de Pamplona.