Connected, compactness and separation axioms via open sets in bitopological spaces
DOI:
https://doi.org/10.24054/bistua.v20i2.1381Keywords:
Bitopological spaces, generalized open sets, connected and compactness.Abstract
En este artículo, se utiliza la noción de conjuntos ´(i, j)-am-abiertos para introducir las nociones de (i, j)-am-conexo, (i,j)-am-compacto, (i, j)-am-T0-espacio, (i, j)-am-T1-espacio e (i, j)-am-T2-espacio. Adicionalmente, algunas de sus propiedades y caracterizaciones son probadas.
Downloads
References
Das, s., Das, R., Granados, C., and Mukherjee, M., Pentapartitioned Neutrosophic Q-Ideals of Q-Algebra,
Neutrosophic Sets and Systems. 41(2021), 52-63.
Fletcher, P., Hoyle, H. and Patty, W., The comparison of topologies, Duke Math. J. . 36(1969), 325-331.
Granados, C., Contra (i,j)-am-continuous functions in bitopological spaces, Journal of Applied Science and Computations. 7(5)(2020), 64-67.
Granados, C., am-closed sets in bitopological spaces, International Journal of Mathematical Analysis. 14(4)(2020), 171-175.
Granados, C., w-N -a-open sets and w-N -a-continuity in bitopological spaces, General Letters in Mathematics, 8(2)(2020), 41-50.
Granados, C., A note on semi-open sets in triclosure spaces, Journal of Mathematical and Computational Science, 11(1)(2021), 769-778.
Kelly, J., Bitopological spaces, Proc. London Math. Soc. 13(3)(1963), 71-89.
Padma, P., Chandrasekhara, K. and Udayakumar, S., Pairwise SC compact spaces, International Journal of Analysis and Applications. 2(2)(2013), 162-172.
Pervin, W., Connectedness in bitopological spaces, Ind. Math. 29(1967), 369-372.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 © Autores; Licencia Universidad de Pamplona.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© Autores; Licencia Universidad de Pamplona