N´ucleos definidos positivos, relaci´on dual y aplicaciones

Authors

  • Arnaldo De La Barrera Correa Department of Mathematics, University of Pamplona, Address P.O.Box 543057, Pamplona, Colombia
  • Elgar Gualdron Department of Mathematics, University of Pamplona, Address P.O.Box 543057, Pamplona, Colombia
  • Osmin Ferrer Departament of Mathematics, University of Sucre, Address P.O.Box 700001, Sincelejo, Colombia

DOI:

https://doi.org/10.24054/bistua.v20i2.1419

Keywords:

Positive definite kernels, biorthogonal systems, Kolgomorov decomposition, biequivalent kernels, dual relation

Abstract

The aim of this paper is to study some positive definite kernels for operator values in Hilbert spaces. We prove the existence of a kernel K2 associated with any pair of equivalent kernels K1 and K. The pair (K1, K2) is called biequivalent kernels. Mareover, we show that K2 and K are equivalent and satisfy a dual relation similar to Riesz bases, biorthogonal sequences, and dual frames in Hilbert spaces. As a consequence, we obtain new results for stochastic processes.

Downloads

Download data is not yet available.

References

A. De la Barrera, O. Ferrer and J. Sanabria, Positive definite kernels on

the set of integers, stability, some properties and applications, Studia

Universitatis Bades-Bolyai Mathematica, 65 (2020). (preprint )

K. Esmeral, O. Ferrer and A. De La Barrera, Positive definite, biequivalent kernels, duality and applications, Bulgaria International Journal of

Mathematical Analysis, 11 (2017), 901-910.

T. Constantinescu. Schur Parameters, Factorization and Dilation Problems

(1st ednt.), Birkhauser Verlag, ¨ 1996.

L. Debnath and P. Mikusinski, Hilbert Spaces with Applications, Academic Press, Florida, 2005.

D. Evans and J. Lewis, Dilations of Irreversible Evolutions in Algebraic

Quantum Theory, Communications of the Dublin Institute of Advanced

Studies, Series A (Theoretical Physics), 1977.

K. Esmeral and O. Ferrer, Dual and Similar Frames in Krein Spaces,

International Journal of Mathematical Analysis 10 (2016), 939 - 952.

K. Esmeral, O. Ferrer and E. Wagner, Frames in Krein spaces arising from

a non-regular W-metric, Banach J. Math. Anal. 9 (2015), 1–16.

N.K. Sahu and R. N. Mohapatra, Frames in Semi-inner Product Spaces,

Mathematical Analysis and its Applications Roorkee, 143 (2014).

W. Sun . G-frames and g-Riesz bases , Journal of Mathematical Analysis

and Applications. 9 (2006), 437–452.

S. Kumari and R. Vijay, Analysis of Orthogonal and Biorthogonal Wavelet

Filters for Image Compression, International Journal of Computer Applications 21 (2011), 0975 – 8887.

R. M. Young, An introduction to nonharmonic Fourier Series, Academic

Press, New R. M. Young, An introduction to Nonharmonic Fourier Series,

Academic Press, New York, 1980.

Published

2022-10-04 — Updated on 2022-10-27

How to Cite

De La Barrera Correa, A., Gualdron, E., & Ferrer, O. (2022). N´ucleos definidos positivos, relaci´on dual y aplicaciones. BISTUA REVISTA DE LA FACULTAD DE CIENCIAS BASICAS, 20(2), 35–42. https://doi.org/10.24054/bistua.v20i2.1419

Issue

Section

Paper