N´ucleos definidos positivos, relaci´on dual y aplicaciones
DOI:
https://doi.org/10.24054/bistua.v20i2.1419Keywords:
Positive definite kernels, biorthogonal systems, Kolgomorov decomposition, biequivalent kernels, dual relationAbstract
The aim of this paper is to study some positive definite kernels for operator values in Hilbert spaces. We prove the existence of a kernel K2 associated with any pair of equivalent kernels K1 and K. The pair (K1, K2) is called biequivalent kernels. Mareover, we show that K2 and K are equivalent and satisfy a dual relation similar to Riesz bases, biorthogonal sequences, and dual frames in Hilbert spaces. As a consequence, we obtain new results for stochastic processes.
Downloads
References
A. De la Barrera, O. Ferrer and J. Sanabria, Positive definite kernels on
the set of integers, stability, some properties and applications, Studia
Universitatis Bades-Bolyai Mathematica, 65 (2020). (preprint )
K. Esmeral, O. Ferrer and A. De La Barrera, Positive definite, biequivalent kernels, duality and applications, Bulgaria International Journal of
Mathematical Analysis, 11 (2017), 901-910.
T. Constantinescu. Schur Parameters, Factorization and Dilation Problems
(1st ednt.), Birkhauser Verlag, ¨ 1996.
L. Debnath and P. Mikusinski, Hilbert Spaces with Applications, Academic Press, Florida, 2005.
D. Evans and J. Lewis, Dilations of Irreversible Evolutions in Algebraic
Quantum Theory, Communications of the Dublin Institute of Advanced
Studies, Series A (Theoretical Physics), 1977.
K. Esmeral and O. Ferrer, Dual and Similar Frames in Krein Spaces,
International Journal of Mathematical Analysis 10 (2016), 939 - 952.
K. Esmeral, O. Ferrer and E. Wagner, Frames in Krein spaces arising from
a non-regular W-metric, Banach J. Math. Anal. 9 (2015), 1–16.
N.K. Sahu and R. N. Mohapatra, Frames in Semi-inner Product Spaces,
Mathematical Analysis and its Applications Roorkee, 143 (2014).
W. Sun . G-frames and g-Riesz bases , Journal of Mathematical Analysis
and Applications. 9 (2006), 437–452.
S. Kumari and R. Vijay, Analysis of Orthogonal and Biorthogonal Wavelet
Filters for Image Compression, International Journal of Computer Applications 21 (2011), 0975 – 8887.
R. M. Young, An introduction to nonharmonic Fourier Series, Academic
Press, New R. M. Young, An introduction to Nonharmonic Fourier Series,
Academic Press, New York, 1980.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 © Autores; Licencia Universidad de Pamplona.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© Autores; Licencia Universidad de Pamplona