Application of a limit Function Of Negative Hyper-geometric Distribution in Option Pricing.

Authors

  • Samson Egege Department of Mathematics, Abia State University, Utura, Nigeria
  • Bright O. Osu Escuela de Educación, Universidad Nacional Abierta y a Distancia, Puerto Colombia, Colombia
  • Carlos Granados Escuela de Educación, Universidad Nacional Abierta y a Distancia, Puerto Colombia, Colombia

DOI:

https://doi.org/10.24054/bistua.v20i2.1497

Keywords:

Negative hyper geometric distribution, wealth equation and option

Abstract

This work introduces limit function of a negative hyper geometric distribution of the form .where  and, which is applied in option pricing using wealth equation and some martingale tools. This paper present a simple discrete time model in compares. This work conclude that limit of negative hyper geometric as  can be associated with financial terms that can be used to evaluate option values (non dividend)  which gives the same numerical with CRR model.

Downloads

Download data is not yet available.

References

A. Mehra, S.D Chandra and R. Khemchandari, Financial Mathematics An introduction, Narosa Publishing House, India first edition pp 49-75, 2013.

F.I Cheng and C.I. Alice ,Application of Binomial distribution to evaluate call option (finance) handbook of quantitative finance and risk management availabl e onnline.www.springer.com 2010

J.C Cox, S.A Ross. and M. Rubinstein ,Option pricing: A Simplified Approach journal of financial Economic 7(3):2-34 ,1979.

R. Stockbridge,The discrete Binomial model for option pricing ,Phdprogram in Applied mathematics, available online www.sematicscholar.org. 2008.

K..Teerapabolarn An improved Binomial distribution to approximate the negative hypergeometric distribution, International Journal of pure and applied mathematics 91(1):77-81. 2014

M. B. Zeina, A. Hatip, Neutrosophic random variables, Neutrosophic Sets and Systems, 39, 44-52, 2021.

C. Granados,New results on neutrosophic random variables Neutrosophic Sets and Systems, 47, 286-297, 2021.

C. Granados, J. Sanabria, On independence neutrosophic random variables, Neutrosophic Sets and Systems, 47, 541-557, 2021.

C. Olunkwa, B.O. Osu, C. Granados, Mean variance portfolio selection problem with multiscale stochastic volatility, Prospectiva 20(2)(2022), 1-11

Published

2022-11-13 — Updated on 2022-11-15

How to Cite

Egege, S., Osu, B. O., & Granados, C. (2022). Application of a limit Function Of Negative Hyper-geometric Distribution in Option Pricing. BISTUA REVISTA DE LA FACULTAD DE CIENCIAS BASICAS, 20(2), 43–47. https://doi.org/10.24054/bistua.v20i2.1497

Issue

Section

Paper