PRODUCTION OF LACTIC ACID (D-AL) FROM HASS SEEDS BY THE LACTOGENIC ECA Escherichia coliJU1
DOI:
https://doi.org/10.24054/limentech.v21i1.2364Keywords:
Azúcares reductores, hidrólisis ácida, Escherichia coli JU15, semilla de aguacate, fermentaciónAbstract
The main objective was the study and physical-chemical characterization of Hass avocado seed (residue to be used as a source of carbohydrates) for the production of lactic acid (D-Lactic Acid) together with the lactogenic strain Escherichia coliJU15, optimal conditions of time and concentration of sulfuric acid (H2SO4) were set as acid pretreatment applied to the starch extracted from the seed for the recovery of reducing sugars. Characterization of lignocellulosic materials included quantification of moisture, extractives, structural carbohydrates, starch, lignin and ash, in order to determine the transformation potential of the seed. The quantification and identification of reducing sugars was carried out by HPLC. Subsequently, fermentation was carried out with the E. coliJU15 strain on the starch hydrolysate of the seeds with AM1 mineral medium. The main compound that was identified was glucose, on the other hand, a minimum amount of acetic acid, xylose and arabinose which formed the hydrolyzate, finally a production of 70.28 gD-AL/L was obtained in 72 hours of fermentation with a volumetric productivity of 0.97 gD-AL/L*h and a maximum yield of 96.37% of the final product.
Downloads
References
Aletan, U. (1 de diciembre de 2018). Proximate and Physicochemical Analysis of the Fruit and Oil Avocado Pear. Communication in Physical Sciences, 7, 18-26.
Almanza H. Kevin, Navarro U. Miguel, Ruiz
C. Javier (2019). Extracción de colorante en polvo a partir de la semilla de aguacate en variedades hass y fuerte. Revista @limentech, Ciencia y Tecnología Alimentaria. ISSN 1692-7125. Volumen 17 N° 1. Pp: 5 – 14.
Alves de Oliveira, R., Komesu, A., Vaz Rossel, C. E., & Maciel Filho, R. (2018). Challenges and opportunities in lactic acid bioprocess design—From economic to production aspects. Biochemical Engineering Journal, 133, 219-239. doi:https://doi.org/10.1016/j.bej.2018.03.00 3
Cid-Pérez Teresa Soleda, T. S., Hernández Carranza, P., Ochoa Velasco, C. E., Ruiz López, I. I., Nevárez Moorillón , G. V., & Ávila Raúl , R. (Junio de 2021). Avocado
seeds (Persea americana cv. Criollo sp.): Lipophilic compounds profile and biological activities. Saudi Journal of Biological Sciences, 28, 3384-3390.
doi:https://doi.org/10.1016/j.sjbs.2021.02.0 87.
García Martínez, C. A., & Salmerón Vanegas, L. A. (2016). Estudio comparativo de la producción a escala de laboratorio de jarabe de glucosa por medio de la hidrólisis acida de almidón de yuca y almidón de papa. (Tesis de Licenciatura).
Grand View Research. (2020). Grand View Research. doi:https://www.grandviewresearch.com/in dustry-analysis/lactic-acid-and-polylactic- acid-market.
Hernández, A. (15 de Marzo de 2018). El Dictamen. doi:https://www.eldictamen.mx/girando-en- verde/residuos-de-aguacate podrianconvertirse-en-biocombustible- gracias-a-cientificos-mexicanos/
Juarez Escobar, J., Guerrero Analco, J. A., & Zamora Briseño, J. A. (2021). Tissuespecific proteome characterization of avocado seed during postharvest shelf life. Journal of Proteomics, 235, 104-112. doi:https://doi.org/10.1016/j.jprot.2021.104 112
Karthikeyan, O., Trably, E., & Mhariya, S. (2018). Pretreatment of food waste for methane and hydrogen recovery: A review. Tecnología de fuentes biológicas, 1025- 1039.
Komesu, A., Roch de Oliveira, J. A., & Silva Martins, L. (2017). Lactic Acid Production to Purification: A Review. Luiza Helena, 4364- 4383.
doi:https://bioresources.cnr.ncsu.edu/wpco ntent/uploads/2017/04/BioRes_12_2_ 4364_REVIEW_Komesu_OMF_Lactic- Acid_Production_Purification_10509.pdf
Lech, M. (6 de Febrero de 2020). Optimisation of protein-free waste whey supplementation used for the industrial microbiological production of lactic acid. Biochemical Engineering Journal, 157. doi:https://doi.org/10.1016/j.bej.2020.1075 31
Mantilla Roldan, J. M., & Zavala Agreda, J.
M. (2018). Extracción y Caracterización de almión de las semillas de Persea americana Mill. (Palta). Fuerte , Hass y Criolla. (Tesis de Maestria)). Universidad Nacional de Trujillo, Perú. doi:http://dspace.unitru.edu.pe/handle/UNI TRU/11329
Martínez, A., Rodríguez Alegría, M., Conceição Fernande, M., & Vargas-Tah, A. (2017). Metabolic Engineering of Escherichia coli for Lactic Acid Production from Renewable Resources. Engineering of Microorganisms for the Production of Chemicals and Biofuels from Renewable Resources, 125-145.
doi:https://doi.org/10.1007/978-3-319- 51729-2_5
Morales de la Rosa, S. (2015). Hidrólisis ácida de celulosa y biomasa lignocelulósica asistida con líquidos iónicos. (Tesis Doctoral). Universidad Autónoma de Madrid, Madrid.
doi:https://digital.csic.es/bitstream/10261/1 32717/1/morales_de_la_rosa_silvia.
Palmerín Carreño, D. M., Hernández Orihuela, A. L., & Martínez Antonio , A.
(2019). Production of d-Lactate from Avocado Seed Hydrolysates by Metabolically Engineered Escherichia coli JU15. Fermentation, 5, 26.
doi:https://doi.org/10.3390/fermentation501 0026
Santos Corona, A. M. (2020). Caracterización de Desperdicios de Alimentos de su Reúso en la Obtención de Ácido Láctico. (Tesis de Maestria). Universidad Michoacana de San Nicolás de Hidalgo, México
Sagarpa. (2017). Gobierno de México. doi:https://www.gob.mx/cms/uploads/attac hment/file/257067/PotencialAguacate.pdf
Sluiter, A., Hames, B., Ruiz, C., & Wolfe, J. (2012). Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples. Technical Report, National Renewable Energy Laboratory, Colorado. doi:https://www.nrel.gov/docs/gen/fy08/426 21.pdf
Sluiter, A., Hames, B., & Templeton, D. (2015). Determination of Ash in Biomass. Technical Report, National Renewable Energy Laboratory, Colorado.
doi:https://www.nrel.gov/docs/gen/fy08/426 22.pdf
Utrilla, J., Vargas-Tah, A., & Trujillo, B. (Noviembre de 2016). Production of dlactate from sugarcane bagasse and corn stover hydrolysates using metabolic engineered Escherichia coli strains. Bioresource Technology, 220, 208-214. doi:https://doi.org/10.1016/j.biortech.2016. 08.067
Downloads
Published
Versions
- 2023-07-28 (6)
- 2023-07-28 (5)
- 2023-07-28 (4)
- 2023-07-19 (3)
- 2023-05-02 (2)
- 2023-04-28 (1)