Artificial Intelligence in Colombian Agriculture. Colombian versus Global Perspectives
DOI:
https://doi.org/10.24054/cyta.v10i2.4254Keywords:
Artificial intelligence in agriculture, smart farming, Agricultural sustainability, Digital transformationAbstract
Artificial intelligence is no longer a futuristic aspiration; it is a tangible tool transforming agricultural production. Demographic growth and increasing food demand, together with environmental sustainability and climate change challenges, force the sector to evolve toward more efficient and resilient systems. International studies report that machine learning and other AI techniques improve agricultural productivity, reduce costs and enable the management of large volumes of data, although they face challenges related to data quality and availability, technological infrastructure and farmers skills. This review summarises major trends, applications, benefits and challenges of AI in agriculture worldwide. We analyse the adoption of technologies, from machine learning algorithms and deep neural networks to Internet of Things (IoT) tools and robotics, in areas such as early pest and disease detection, water and nutrient management, agricultural mapping, livestock farming and aquaculture. The worlds scientific production is contrasted with that from Colombia, revealing notable progress but also limited national output. Data on the selected articles (year, country, technology, sector and results) are synthesised, and charts illustrate the temporal, geographical and sectoral distribution of research. The findings are discussed in light of Colombias agricultural development agenda, and future research directions are proposed.
Downloads
References
Albert, E. T. A., Bille, N. H., & Eddy Leonard, N. M. (2025). Leveraging deep learning for plant disease identification: A bibliometric analysis in SCOPUS from 2018 to 2024. Journal of Scientific Agriculture, 9, 16–39. https://doi.org/10.25081/jsa.2025.v9.9412
Aroba, O. J., & Rudolph, M. (2024). Systematic literature review on the application of precision agriculture using artificial intelligence by small-scale farmers in Africa and its societal impact. Journal of Infrastructure, Policy and Development, 8(13), 8872. https://doi.org/10.24294/jipd8872
Barrios-Ulloa, A., Cama-Pinto, D., Arrabal-Campos, F. M., Martínez-Lao, J. A., Cama-Pinto, A., & Manzano-Agugliaro, F. (2025). Agriculture 5.0 in Colombia: Opportunities through the emerging 6G network. Sustainability, 17(15), 6664. https://doi.org/10.3390/su17156664
Bernabucci, G., Evangelista, C., Girotti, P., Viola, P., Spina, R., Ronchi, B., Bernabucci, U., Basiricò, L., Turini, L., Mantino, A., Mele, M., & Primi, R. (2025). Precision livestock farming: An overview on the application in extensive systems. Italian Journal of Animal Science, 24, 1–42. https://doi.org/10.1080/1828051X.2025.2480821
Botero-Valencia, J., García-Pineda, V., Valencia-Arias, A., Valencia, J., Reyes-Vera, E., Mejia-Herrera, M., & Hernández-García, R. (2025). Machine learning in sustainable agriculture: Systematic review and research perspectives. Agriculture, 15(4), 377. https://doi.org/10.3390/agriculture15040377
Buitrago, E., Rico Franco, J. A., & Rojas Amador, S. (2024). Monitoreo de cultivos y suelos en agricultura de precisión con UAVs e inteligencia artificial: Una revisión. Visión Electrónica, 28(82), 75–103.
Chavula, P., Kayusi, F., Lungu, G., Mambwe, H., & Uwimbabazi, A. (2025). AI application in climate-smart agricultural technologies. Latin American Technology and Innovation, 2, 330. https://doi.org/10.62486/latia2025330
Cherubin, M. R., Damian, J. M., Tavares, T. R., Trevisan, R. G., Colaço, A. F., Eitelwein, M. T., Martello, M., Inamasu, R. Y., Pias, O. H. C., & Molin, J. P. (2022). Precision agriculture in Brazil: The trajectory of 25 years of scientific research. Agriculture, 12(11), 1882. https://doi.org/10.3390/agriculture12111882
Coulibaly, S., Kamsu-Foguem, B., Kamissoko, D., & Traore, D. (2022). Deep learning for precision agriculture: A bibliometric analysis. Intelligent Systems with Applications, 16, 200186.
Departamento Nacional de Planeación. (2025). Documento CONPES 4144: Política Nacional de Inteligencia Artificial. DNP, Colombia. https://colaboracion.dnp.gov.co/CDT/Conpes/Económicos/4144.pdf
Distante, C., Amat, A. K., Leo, M., Mazzoleni, S., & Siciliano, P. (2025). Artificial intelligence applied to precision livestock farming. Computers and Electronics in Agriculture, 11, 100889. https://doi.org/10.1016/j.atech.2025.100889
Dos Santos, V. A. M., Marcuzzo, F. F. N., & Romero, V. (2022). Machine learning algorithms for soybean yield forecasting in the Brazilian Cerrado. Journal of the Science of Food and Agriculture, 102(9), 3665–3672. https://doi.org/10.1002/jsfa.11713
Espinel, R., Herrera-Franco, G., Rivadeneira García, J. L., & Escandón-Panchana, P. (2024). Artificial intelligence in agricultural mapping: A review. Agriculture, 14(7), 1071. https://doi.org/10.3390/agriculture14071071
FAO. (2009). The state of food and agriculture 2009: Livestock in the balance. Food and Agriculture Organization of the United Nations.
FAO. (2010). The state of food insecurity in the world 2010. Food and Agriculture Organization of the United Nations.
FAO. (2018). The future of food and agriculture – Alternative pathways to 2050. Food and Agriculture Organization of the United Nations.
García, R., Aguilar, J., & Pinto, Á. (2024). An autonomous system for the self-supervision of animal fattening in the context of precision livestock farming. Future Generation Computer Systems, 150, 220–231
García, V., López, M., & Salazar, C. (2025). Evolución de las aplicaciones de inteligencia artificial en la agroindustria cafetera. Investigación e Innovación en Ingenierías, 13(1), 89–105.
He, T., Li, M., & Jin, D. (2025). Deep learning-based time series prediction for precision field crop protection. Frontiers in Plant Science, 16, 1575796. https://doi.org/10.3389/fpls.2025.1575796
Hernández-Salazar, C. A., González-Escobar, E. O. A., & González-Silva, G. (2024). Integración de la inteligencia artificial y la agricultura de precisión en cultivos de café. Revista UIS Ingenierías, 23(4), 145–158. https://doi.org/10.18273/revuin.v23n4-2024012
Liu, Z., Chen, H., & Wang, Q. (2024). Precision agriculture current progress from a novel perspective. Agronomy Journal, 116(6), 2847–2865.
Majdalawieh, M., Al-Mansouri, S., & Al-Ketbi, S. (2025). Precision agriculture in the age of AI: A systematic review. Computers and Electronics in Agriculture, 212, 1–22.
Menezes, G. L., Mazon, G., Ferreira, R. E. P., Cabrera, V. E., & Dorea, J. R. R. (2024). Artificial intelligence for livestock: A narrative review of the applications of computer vision systems and large language models for animal farming. Animal Frontiers, 14(6), 42–53. https://doi.org/10.1093/af/vfae048
Ministerio de Tecnologías de la Información y las Comunicaciones. (2024). Plan de conectividad rural para Colombia 2024-2030. MinTIC, Colombia.
Neethirajan, S., Busstra, M. C., & Atkinson, H. D. (2025). Artificial intelligence for livestock: Current applications and future perspectives. Livestock Science, 291, 1–12.
Nguyen, T. H., Phan, M. D., & Tran, V. H. (2024). A review of generative AI in aquaculture: Applications and case studies. Aquacultural Engineering, 87, 1–14.
Rejeb, A., Simões, D., Rejeb, K., & Treiblmaier, H. (2024). Precision agriculture: A bibliometric analysis. Computers and Electronics in Agriculture, 217, 1–18.
Rodríguez, J. P., Montoya-Muñoz, A. I., Rodríguez-Pabón, C., Hoyos, J., & Corrales, J. C. (2021). IoT-Agro: A smart farming system to Colombian coffee farms. Computers and Electronics in Agriculture, 186, 106442. https://doi.org/10.1016/j.compag.2021.106442
Sharma, S. (2022). Implementation of artificial intelligence in agriculture. Journal of Cloud Computing and Emerging Technologies, 2(2), 36–41. https://doi.org/10.47852/bonviewJCCE2202174
Shoaib, M., Shah, B., El-Sappagh, S., Ali, A., Ullah, A., Alenezi, A., Gechev, T., Hussain, A., & Ali, A. (2023). An advanced deep learning models-based plant disease detection: A review of recent research. Frontiers in Plant Science, 14, 1158933. https://doi.org/10.3389/fpls.2023.1158933
Torsoni, G. B., Fonseca, A. B., Souza, G. M., & Franco, R. (2023). Soybean yield prediction by machine learning and climate. Theoretical and Applied Climatology, 151(3), 1709–1725. https://doi.org/10.1007/s00704-022-04341-9
Vargas-Bello-Pérez, E., Silva, E., García, P., & Melak, H. (2025). The role of artificial intelligence in Latin American ruminant production systems. Animal Frontiers, 14(6), 23–32. https://doi.org/10.1093/af/vfae034
von Bloh, M., Nóia Júnior, R. de S., Wangerpohl, X., Saltík, A. O., Haller, V., Kaiser, L., & Asseng, S. (2023). Machine learning for soybean yield forecasting in Brazil. Agricultural and Forest Meteorology, 341, 109670. https://doi.org/10.1016/j.agrformet.2023.109670
Wang, W., & Li, Q. (2025). Leveraging machine learning for sustainable agriculture. Computers and Electronics in Agriculture, 211, 1–18. https://doi.org/10.1016/j.jclepro.2025.146434
Xia, Z., Mandal, B., & Ghosh, A. (2023). Artificial Intelligence of Things (AIoT): A comprehensive review and outlook on its applications in aquaculture. Processes, 13(1), 73. https://doi.org/10.3390/pr13010073
Xu, W., Chen, Y., Liu, Y., & Zhang, M. (2024). The evolution of precision agriculture and food safety. Frontiers in Sustainable Food Systems, 8, 1475602. https://doi.org/10.3389/fsufs.2024.1475602
Zhang, R., Wu, X., Zhang, Y., et al. (2025). A bibliometric review of deep learning in crop monitoring: Trends, challenges, and future perspectives. Frontiers in Plant Science, 16, 1538163. https://doi.org/10.3389/fpls.2025.1538163
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Juan Carlos Escalante

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.




