Alternativas agroecológicas para la resiliencia de especies forrajeras frente al cambio climático

Autores/as

DOI:

https://doi.org/10.24054/cyta.v8i1.2876

Palabras clave:

sistemas agropecuarios, impacto ambiental, biodiversidad vegetal, fertilidad del suelo

Resumen

La creciente demanda mundial de alimentos ha promovido la expansión de la agricultura, incrementando la prevalencia de monocultivos a gran escala. Esta expansión ha generado una gestión ineficaz de los suelos y su rápida degradación. Simultáneamente, factores abióticos asociados al cambio climático, como el aumento de temperaturas y la reducción de precipitaciones, han alterado significativamente la variabilidad climática de los ecosistemas. Frente a estas consecuencias, la implementación de prácticas agroecológicas como la labranza mínima, el uso de abonos verdes, la diversificación de cultivos, la agroforestería y la conservación del agua y suelo, junto con la protección de especies nativas, emerge como una estrategia efectiva para mitigar los impactos del cambio climático. En tal sentido, se realizó una revisión meticulosa de literatura científica publicada entre 2010 y 2023, en inglés y español, de plataformas como Google Scholar, PubMed, ScienceDirect y ResearchGate. Los temas principales incluyeron el cambio climático, la sostenibilidad y las prácticas agroecológicas. Los hallazgos destacaron que las prácticas agroecológicas no solo equilibran el ambiente, sino que también mejoran las condiciones para el crecimiento de especies forrajeras, vitales para los sistemas agropecuarios. Al promover un entorno favorable, estas prácticas fortalecen la resiliencia de los ecosistemas, mejorando la biodiversidad vegetal, el microbioma, la fertilidad del suelo y creando microclimas óptimos para especies no invasoras que facilitan el reciclaje de nutrientes y la estabilidad de la biósfera.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Altieri, M. A., & Nicholls, C. I. (2013). Agroecología y resiliencia al cambio climático: Principios yconsideraciones metodológicas. Agroecología, 8(1), 7-20.

Altieri, M. A., Nicholls, C. I., Henao, A., & Lana, M. A.(2015). Agroecology and the design of climate changeresilient farming systems. Agronomy for Sustainable Development. 35 (3), 869–890. https://doi.org/10.1007/s13593-015-0285-2 DOI: https://doi.org/10.1007/s13593-015-0285-2

Asghar, W., & Kataoka, R. (2022). Different Green Manures (Vicia villosa and Brassica juncea) Construct Different Fungal Structures, Including Plant-GrowthPromoting Effects, after Incorporation into the Soil. Agronomy, 12(2). https://doi.org/10.3390/agronomy12020323 DOI: https://doi.org/10.3390/agronomy12020323

Bogale, G. A., & Bekele, S. E. (2023). Sustainability of Agroforestry Practices and their Resilience to Climate Change Adaptation and Mitigation in Sub-Saharan Africa: A Review. Ekologia Bratislava, 42(2), 179–192. https://doi.org/10.2478/eko-2023-0021 DOI: https://doi.org/10.2478/eko-2023-0021

Busari, M., Kukal, S., Kaur, A., Bhatt, R., & Dulazi, A. (2015). Conservation tillage impacts on soil, crop and the environment. International Soil and Water Conservation Research, 3, 119–129. https://doi.org/10.1016/j.iswcr.2015.05.002 DOI: https://doi.org/10.1016/j.iswcr.2015.05.002

Butterly, C. R., Armstrong, R. D., Chen, D., & Tang, C. (2019). Residue decomposition and soil carbon priming in three contrasting soils previously exposed to elevated CO 2. Biology and Fertility of Soils, 55(1), 17–29. https://doi.org/10.1007/s00374-018-1321-6 DOI: https://doi.org/10.1007/s00374-018-1321-6

Cabel, J. F., & Oelofse, M. (2012). An indicator framework for assessing agroecosystem resilience. Ecology andSociety, 17(1). https://doi.org/10.5751/ES-04666-170118 DOI: https://doi.org/10.5751/ES-04666-170118

Castellanos González , L., González Pedraza , A., & Capacho Mogollón , A. (2020). Influencia de los sistemas agroforestales del Proyecto Plantar sobre la macrofauna del suelo. BISTUA Revista De La Facultad De Ciencias Básicas, 105–116. https://doi.org/10.24054/bistua.vi.222 DOI: https://doi.org/10.24054/01204211.v3.n3.2019.3571

Contreras-Santos, J. L., Martinez-Atencia, J., Raghavan, B., Lopez-Rebolledo, L., & Garrido-Pineda, J. (2021). Silvopastoral systems: Mitigation of greenhouse gases in the tropical dry forest - Colombia. Agronomia Mesoamericana, 32(3), 901–919. https://doi.org/10.15517/AM.V32I3.43313 DOI: https://doi.org/10.15517/am.v32i3.43313

Delgado-Baquerizo, M., Guerra, C. A., Cano-Díaz, C., Egidi, E., Wang, J. T., Eisenhauer, N., Singh, B. K., & Maestre, F. T. (2020). The proportion of soil-borne pathogens increases with warming at the global scale. Nature Climate Change, 10(6), 550–554. https://doi.org/10.1038/s41558-020-0759-3 DOI: https://doi.org/10.1038/s41558-020-0759-3

Denbela, H., & Mesay, G. (2017). Climate Change Effects on Livestock Feed Resources: A Review. Journal of Fisheries & Livestock Production, 05(04). https://doi.org/10.4172/2332-2608.1000259 DOI: https://doi.org/10.4172/2332-2608.1000259

González-Pedraza, A. F., & Dezzeo, N. (2014). Changes in the labile and recalcitrant organic matter fractions due to transformation of semi-deciduous dry tropical forest to pasture in the Western Llanos, Venezuela. En F. E.

Greer (Ed.), Dry Forests: Ecology, Species Diversity and Sustainable Management (pp. 105-132). Nova Science Publishers.

González-Pedraza, A. F., & Dezzeo, N. (2020). Vertical distribution, nutrient concentration and seasonal changes of fine root mass in a semi-deciduous tropical dry forest and in two adjacent pastures in the Western Llanos of Venezuela. Tropical Grasslands-Forrajes Tropicales, 8(2), 93–104. https://doi.org/10.17138/tgft(8)93-104 DOI: https://doi.org/10.17138/tgft(8)93-104

González-Pedraza, A. F., Castellanos González, L., & Capacho, A. E. (2023). Influencia de tres modelos agroecológicos sobre la calidad del suelo en el municipio de Ocaña, Norte de Santander. Primera edición. Universidad de Pamplona. ISBN 978-628-7656-07-9.

González-García, H., González-Pedraza, A. F., Atencio, J., & Soto, A. (2021). Evaluación de calidad de suelos plataneros a través de la actividad microbiana en el sur del lago de Maracaibo, estado de Zulia, Venezuela. Revista de la Facultad de Agronomía de la Universidad del Zulia, 38(2), 216-240. https://produccioncientificaluz.org/index.php/agronomia/article/view/35497 DOI: https://doi.org/10.47280/RevFacAgron(LUZ).v38.n2.01

González-García, H., González Pedraza, A. F., Pineda Zambrano, M., Escalante-García, H., RodríguezYzquierdo, G., & Soto-Bracho, A. (2021). Microbiota edáfica en lotes de plátano con vigor contrastante y su relación con propiedades del suelo. Bioagro, 33(2), 143- 148. https://doi.org/10.51372/bioagro332.8 DOI: https://doi.org/10.51372/bioagro332.8

González-Pedraza, A. F., Atencio, J., Cubillán, K., Almendrales, R., Ramírez, L., & Barrios, O. (2014). Microbial activity in soils cultivated with plantain (Musa AAB plantain subgroup cv. Harton) with different vigor of plants. Revista de la Facultad de Agronomia de la Universidad del Zulia, 31, 526-538.

https://www.revfacagronluz.org.ve/PDF/suplemento_2014/ing/ingsupl12014526538.pdf

Islam, M. A., & Ashilenje, D. S. (2018). Diversified forage cropping systems and their implications on resilience and productivity. Sustainability (Switzerland), 10(11).https://doi.org/10.3390/su10113920 DOI: https://doi.org/10.3390/su10113920

Jiménez-Jiménez, R. A., Rendón-Rendón , M. C., ChávezPérez, L. M. & Soler Fonseca, D. M. (2019). La polarización de los sistemas de producción pecuaria en México. Ciencia y Tecnología Agropecuaria, 4(1), 31-39. https://ojs.unipamplona.edu.co/index.php/rcyta/article/view/981/1118

Krauss, M., Berner, A., Perrochet, F., Frei, R., Niggli, U., & Mäder, P. (2020). Enhanced soil quality with reduced tillage and solid manures in organic farming – a synthesis of 15 years. Nature Research, 10(4403), 1–12. https://doi.org/10.1038/s41598-020-61320-8 DOI: https://doi.org/10.1038/s41598-020-61320-8

Kumari, A., Lakshmi, G. A., Krishna, G. K., Patni, B., Prakash, S., Bhattacharyya, M., Singh, S. K., & Verma, K. K. (2022). Climate Change and Its Impact on Crops: A Comprehensive Investigation for Sustainable Agriculture. Agronomy, 12(12), 1–16. https://doi.org/10.3390/agronomy12123008 DOI: https://doi.org/10.3390/agronomy12123008

Kuzyakov, Y., Horwath, W. R., Dorodnikov, M., & Blagodatskaya, E. (2019). Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: No changes in pools, but increased fluxes and accelerated cycles. Soil Biology and Biochemistry, 128, 66–78. https://doi.org/10.1016/j.soilbio.2018.10.005 DOI: https://doi.org/10.1016/j.soilbio.2018.10.005

Lasco, R. D., Delfino, R. J. P., & Espaldon, M. L. O. (2014). Agroforestry systems: Helping smallholders adapt to climate risks while mitigating climate change. Wiley Interdisciplinary Reviews: Climate Change, 5(6), 825–833. https://doi.org/10.1002/wcc.301 DOI: https://doi.org/10.1002/wcc.301

Lobell, D. B., & Field, C. B. (2007). Global scale climate – crop yield relationships and the impacts of recent warming. Environmental Research, 2. https://doi.org/10.1088/1748-9326/2/1/014002 DOI: https://doi.org/10.1088/1748-9326/2/1/014002

Ma, D., Lina, Y., Wenliang, J., Xiankun, L., Xiaoxiao, L., Xiping, D., & Shiwen, W. (2021). Meta-analysis of green manure effects on soil properties and crop yield in northern China. Field Crops Research, 266(26), 108146. https://doi.org/10.1016/j.fcr.2021.108146 DOI: https://doi.org/10.1016/j.fcr.2021.108146

Vega-Celedón, P., Canchignia Martínez, H., González, M., & Seeger, M. (2016). Biosíntesis de ácido indol-3- acético y promoción del crecimiento de plantas por bacterias. Cultivos Tropicales, 37(Especial), 31-37. https://www.researchgate.net/publication/304195424_Review_Biosynthesis_of_indole-3-acetic_acid_and_plant_growth_promoting_by_bacteria

Mbow, C., Smith, P., Skole, D., Duguma, L., & Bustamante, M. (2014). Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Current Opinion in Environmental Sustainability, 6, 8–14. https://doi.org/https://doi.org/10.1016/J.COSUST.2013.09.002 DOI: https://doi.org/10.1016/j.cosust.2013.09.002

Mijatovic, D., Oudenhoven, F. Van, Eyzaguirre, P., & Hodgkin, T. (2012). Change: Towards an analytical framework International Journal of Agricultural Sustainability The role of agricultural biodiversity in strengthening resilience to climate change: towards an analytical framework. International Journal of Agricultural Sustainability, 2(November), 1–13. https://doi.org/10.1080/14735903.2012.691221 DOI: https://doi.org/10.1080/14735903.2012.691221

Mir, M. S., Saxena, A., Kanth, R. H., Raja, W., Dar, K. A., Mahdi, S. S., Bhat, T. A., Naikoo, N. B., Nazir, A., Amin, Z., Mansoor, T., Myint, M. Z., Khan, M. R., Mohammad, I., & Mir, S. A. (2022). Role of Intercropping in Sustainable Insect-Pest Management: A Review. International Journal of Environment and Climate Change, 3390–3404. https://doi.org/10.9734/ijecc/2022/v12i111390 DOI: https://doi.org/10.9734/ijecc/2022/v12i111390

Nahed-Toral, J., Valdivieso-Pérez, A., Aguilar-Jiménez, R., Cámara-Cordova, J., & Grande-Cano, D. (2013). Silvopastoral systems with traditional management in southeastern Mexico: A prototype of livestock agroforestry for cleaner production. Journal of Cleaner Production, 57, 266–279. https://doi.org/10.1016/j.jclepro.2013.06.020 DOI: https://doi.org/10.1016/j.jclepro.2013.06.020

Nicholls, C. I., Henao, A., & Altieri, M. A. (2015). Agroecología y el diseño de sistemas agrícolas resilientes al cambio climático. Agroecología, 10(1), 7–31.

Olmos, F. (2013). El modelo actual y los recursos genétcios forrajeros: Resiliencia y futuro. 35–39.

Paini, D. R., Sheppard, A. W., Cook, D. C., De Barro, P. J., Worner, S. P., & Thomas, M. B. (2016). Global threat to agriculture from invasive species. Proceedings of the National Academy of Sciences of the United States of America, 113(27), 7575–7579. https://doi.org/10.1073/pnas.1602205113 DOI: https://doi.org/10.1073/pnas.1602205113

Quesenberry, K., Rios, E., Kenworthy, K., Blount, A., & Reith, P. (2022). Breeding forages with climate resiliency in temperate/tropical transition zones. Grass and Forage Science, 124–130. https://doi.org/https://doi.org/10.1111/gfs.12566 DOI: https://doi.org/10.1111/gfs.12566

Sloat, L. L., Gerber, J. S., Samberg, L. H., Smith, W. K., Herrero, M., Ferreira, L. G., Godde, C. M., & West, P. C. (2018). Increasing importance of precipitation variability on global livestock grazing lands. Nature Climate Change, 8, 214–218. https://doi.org/10.1038/s41558-018-0081-5 DOI: https://doi.org/10.1038/s41558-018-0081-5

Standish, R. J., Hobbs, R. J., Mayfield, M. M., Bestelmeyer, B. T., Suding, K. N., Battaglia, L. L., Eviner, V., Hawkes, C. V., Temperton, V. M., Cramer, V. A., Harris, J. A., Funk, J. L., & Thomas, P. A. (2014). Resilience in ecology: Abstraction, distraction, or where the action is? Biological Conservation, 177(September), 43–51. https://doi.org/10.1016/j.biocon.2014.06.008 DOI: https://doi.org/10.1016/j.biocon.2014.06.008

Stefano, A. De, & Jacobson, M. G. (2018). Soil carbon sequestration in agroforestry systems: a meta-analysis Soil carbon sequestration in agroforestry systems: a meta-analysis. Agroforestry Systems. https://doi.org/10.1007/s10457-017-0147-9 DOI: https://doi.org/10.1007/s10457-017-0147-9

Swamy, S. L., & Tewari, V. (2017). Mitigation and adaptation strategies to climate change through agroforestry practices in the tropics. In Mitigation and Adaptation Strategies for Global Change (pp. 725–738). Springer. https://doi.org/10.1007/978-981-10-7650-3_29 DOI: https://doi.org/10.1007/978-981-10-7650-3_29

Turek, M. E., Prasuhn, V., & Holzkämper, A. (2022). Agrohydrological modeling of soil water retention measures to increase crop system resilience to extreme events. EGU General Assembly. https://doi.org/10.5194/egusphere-egu22-2919 DOI: https://doi.org/10.5194/egusphere-egu22-2919

William, M., A. (2016). Drought-Proofing Groundwater. Ground Water, 54(3), 309. https://doi.org/doi: 10.1111/GWAT.12418 DOI: https://doi.org/10.1111/gwat.12418

Zhou, G., Gao, S., Lu, Y., Liao, Y., Nie, J., & Cao, W. (2020). Co-incorporation of green manure and rice straw improves rice production, soil chemical, biochemical and microbiological properties in a typical paddy field in southern China. Soil and Tillage Research, 197, 104499. https://doi.org/10.1016/j.still.2019.104499. DOI: https://doi.org/10.1016/j.still.2019.104499

Descargas

Publicado

2023-05-03

Cómo citar

Fonseca-Restrepo, C., Angulo-Cubillán, F., & Piedrahita-Fonseca, M. J. (2023). Alternativas agroecológicas para la resiliencia de especies forrajeras frente al cambio climático. CIENCIA Y TECNOLOGÍA AGROPECUARIA, 8(1), 18–23. https://doi.org/10.24054/cyta.v8i1.2876

Número

Sección

Artículos de investigación originales (Scientific Articles)