Integración de porosidades y permeabilidades a múltiples escalas en rocas reservorio del Paleógeno en la Cuenca del Valle Medio del Magdalena, Colombia
Integration of multiscale porosities and permeabilities in Paleogene reservoir rocks of the Middle Magdalena Valley Basin, Colombia
DOI:
https://doi.org/10.24054/bistua.v23i1.3497Palabras clave:
minerales arcillosos; propiedades petrofísicas; reservorios; secuencias sedimentarias; ColombiaResumen
Este estudio realiza un análisis descriptivo mineralógico y textural de las rocas sedimentarias ubicadas en los topes formacionales del Paleógeno en la cuenca del Valle Medio del Magdalena, específicamente en las formaciones La Paz, Esmeralda, Colorado y Mugrosa. Estas unidades muestran estructuras sedimentarias, ambientes de depósito y composiciones minerales claramente diferenciables. Se utilizaron técnicas avanzadas como tomografía computarizada (TC) por rayos X, petrografía, difracción de rayos X (DRX) y microscopía electrónica de barrido (MEB) para caracterizar detalladamente las propiedades sedimentológicas, mineralógicas y de porosidad de las muestras. La TC por rayos X permitió identificar estructuras sedimentarias, biogénicas y deformaciones sin-sedimentarias, además de proporcionar valores de densidad y número atómico efectivo útiles en la diferenciación de facies. El análisis petrográfico mostró areniscas con granulometría variable, típicas de ambientes fluviales, con importantes variaciones en el tamaño de grano, diversidad de cementos y desarrollo de porosidad secundaria, lo cual mejora la permeabilidad del reservorio. La DRX identificó cuarzo, feldespatos y minerales arcillosos como componentes principales, mientras que la MEB evidenció la distribución de minerales arcillosos en los poros. Las litologías observadas incluyen conglomerados polimícticos, lutitas, lutitas arenosas, sublitosandstones y litosandstones, asociadas a canales fluviales, llanuras de inundación y ríos meandriformes. La tomografía computarizada se consolida como una herramienta no destructiva clave en la interpretación sedimentológica, al ofrecer imágenes de alta resolución y datos sobre densidad, mineralogía, litología, porosidad y facies. Este enfoque multidisciplinario aporta información esencial para la caracterización de yacimientos, la reconstrucción de ambientes deposicionales y la comprensión de la historia geológica, contribuyendo al avance en la investigación geológica y la exploración de recursos en la cuenca del Valle Medio del Magdalena.
Descargas
Citas
Kamath, J., Xu, B., Lee, S.H., Yortsos, Y.C. Use of pore network models to interpret laboratory experiments on vugular rocks. Journal of Petroleum Science and Engineering, 20(3-4) (1998) 109-115.
Ueta, K., Tani, K., Kato, T. Computerized X-ray tomography analysis of three-dimensional fault geometries in basement-induced wrench faulting. Dev. Geotech. Eng. 84 (2000) 233-246.
Akin, S., Kovscek, A.R. Computed tomography in petroleum engineering research. In: Mees, F., Swennen, R., Van Geet, M., Jacobs, P. (eds.). Application of X-ray Computed Tomography in the Geosciences, Geological Society of London, Special Publications, 215 (2003) 23-38.
Mees, F., Swennen, R., Geet, M.V., Jacobs, P. Applications of X-Ray Computed Tomography in Geosciences. Geological Society of London, Special Publications, 215 (2003) 1-6.
Földes, T., Árgyelán, G.B., Bogner, P., Repa, I., Kiss, B., Hips, K. Application of medical Computer Tomograph measurements to 3D reservoir characterization. Acta Geologica Hungarica, 47(1) (2004) 63–73.
Siddiqui, S., Khamees, A.A. Dual-Energy CT-Scanning Applications in Rock Characterization. SPE Annual Technical Conference and Exhibition, Houston, USA, September 26-29, 2004. SPE 90520-MS.
Cnudde, V., Boone, M.N. High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth-Science Reviews, 123 (2013) 1–17.
Mena, A., Francés, G., Pérez-Arlucea, M., Aguiar, P., Barreiro-Vázquez, J.D., Iglesias, A., Barreiro-Lois, A. A novel sedimentological method based on CT-scanning: Use for tomographic characterization of the Galicia Interior Basin. Sedimentary Geology, 321 (2015) 123-138.
Al-Marzouq, A.M., Al-Ghamdi, T.M., Koronfol, S., Dernaika, M.R., Walls, J.D. Shale Gas Characterization and Property Determination by Digital Rock Physics, SPE-SAS Annual Technical Symposium & Exhibition, Al Khobar, Saudi Arabia, April 21-24, 2014.
Walls, J.D., Sinclair, S.W. An Integrated Approach to Shale Reservoir Characterization Using Digital Rock Physics. 12th International Congress of the Brazilian Geophysical Society, Rio de Janeiro, Brazil, August 15-18, 2011.
Van Geet, M., Swennen, R., Wevers, M. Towards 3-D petrography: application of microfocus computer tomography in geological science. Comput. Geosci. 27 (2001) 1091-1099.
Mogensen, K., Stenby, E.H., Zhou, D. Studies of waterflooding in low-permeable chalk by use of X-ray CT scanning. Journal of Petroleum Science and Engineering, 32(1) (2001) 1-10.
Anderson, S.H., Gantzer, C.J., Boone, J.M. Rapid non-destructive bulk density and soil water content determination by computer tomography. Soil Science Society of America Journal, 52 (1988) 35-40.
Renter, J.A.M. Applications of computerized tomography in sedimentology. Marine Geotechnology, 8(3) (1989) 201-211.
Baniak, G.M., Gingras, M.K., Pemberton, S.G. Reservoir characterization of burrow-associated dolomites in the upper Devonian Wabamun group, Pine Creek gas field, central Alberta, Canada. Marine and Petroleum Geology, 48 (2013) 275–292.
Deprez, M. Multiscale micro-CT imaging on sediment cores: unravelling the paleoflow directions in a megaturbidite (Lake Lucerne, Switzerland). Master thesis, Universiteit Gent, Gent, Belgium (2016).
Liu, X., Wang, J., Ge, L., Hu, F., Li, C., Li, X., Yu, J., Xu, H., Lu, S., Xue, Q. Pore-scale characterization of tight sandstone in Yanchang Formation Ordos Basin China using micro-CT and SEM imaging from nm- to cm-scale. Fuel, 209 (2017) 254-264.
García, A.G., Marín, D.A. Estado del Arte del Uso de la Física Digital de Rocas para la Caracterización en Medios Porosos. Undergraduate Thesis, Universidad Industrial de Santander, Bucaramanga, Colombia (2018).
Caballero, V., Parra, M., Mora, A.R. Levantamiento de la Cordillera Oriental durante el Eoceno tardío – Oligoceno temprano Proveniencia sedimentaria en el sinclinal de Nuevo Mundo cuenca Valle Medio del Magdalena. Boletin de Geología, 32(1) (2010) 45–77.
Gómez, E., Jordan, T., Allmendinger, R. Syntectonic Cenozoic sedimentation in the northern Middle Magdalena Valley Basin of Colombia and implications for exhumation of the Northern Andes. Geological Society of America Bulletin, 117(5) (2005) 547–569.
Sarmiento, G., Puentes, J., Sierra, C. Evolution of the geological and stratigraphic framework of the northern sector of the Middle Magdalena Valley. Geol. Norandina 12 (2015) 51-58.
Velandia, F. Kinematics of the major faults of the Santander Massif: emphasis on the structural model and temporality south of the Bucaramanga Fault. PhD Thesis, Universidad Nacional de Colombia, Bogotá, Colombia (2017).
Reineck, H.E. Parameter von Schichtung und bioturbation. Geologischen Rundschau, 56 (1967) 420-438.
Taylor, A.M., Goldring, R. Description and analysis of bioturbation and ichnofabric. Journal of the Geological Society of London, 150 (1993) 141-148.
Folk, R.L. Petrology of Sedimentary Rocks. Hemphill Publishing Co., Austin (1974).
Pettijohn, F.J. Sedimentary Rocks. Harper and Row Publishers, New York (1975).
Limarino, C., Caselli, A., Net, L., Gagliardo, M. A propose of sepfite classification relationed to sand and sandstones composition. Asociación Argentina de Sedimentología, Buenos Aires (1996).
Choquette, P.W., Pray, L.C. Geologic Nomenclature and Classification of Porosity in Sedimentary Carbonates. American Association of Petroleum Geologists Bulletin, 54(2) (1970) 207-250.
Picard, M.D. Classification of fine-grained sedimentary rocks. Journal of Sedimentary Research, 41(1) (1971) 179-195.
Boggs, S. Principles of sedimentology and stratigraphy. Prentice Hall, Hoboken (2006).
Winkler, E.M. Stone: Properties, Durability in Man's Environment. Springer-Verlag, New York (1973).
Johnson, G.R., Olhoeft, G.R., Carmichael, R.S. Density of rocks and minerals. In: Carmichael, R.S. (eds.). Handbook of Physical Properties of Rocks, CRC Press (1984) 1-38.
Komar, P.D. Selective gravel entrainment and the empirical evaluation of flow competence. Sedimentology, 34 (1987) 1165-1176.
Wellington, S.L., Vinegar, H.J. X-Ray Computerized Tomography. J. Pet. Technol. 39 (1987) 885–898.
Siddiqui, S. Some Useful Guidelines for Whole Core CT-Scanning for Petrophysical Applications. International Symposium of the Society of Core Analysts, Houston, USA, September 19-22, 2022. 10.1051/e3sconf/202336701013.
Kantorowicz, J.D. The influence of variations in illite morphology on the permeability of Middle Jurassic Brent Group sandstones, Cormorant Field, UK North Sea. Marine and Petroleum Geology, 7(1) (1990) 66–74.
French, M.W., Worden, R.H., Mariani, E., Larese, R.E., Mueller, R.R., Kliewer, C.E. Microcrystalline Quartz Generation and the Preservation of Porosity in Sandstones: Evidence from the Upper Cretaceous of the Subhercynian Basin, Germany. J. Sediment. Res. 82 (2012) 422-434.
Menke, W. Geophysical Data Analysis: Discrete Inverse Theory. Academic Press, New York (2018).
Machel, H.G. Concepts and models of dolomitization: A critical reappraisal. Geological Society of London, Special Publications, 235(1) (2004) 7-63.
Loucks, R.G., Ruppel, S.C. Mississippian Barnett Shale: Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas. American Association of Petroleum Geologists Bulletin, 91(4) (2007) 579–601.
Kasim, S.A., Ismail, M.S., Ahmed, N., Rashid, A. Facies analysis, petrography and textural characteristics of the onshore Paleogene-Neogene Lawin Basin, Perak, Peninsular Malaysia: Insights into palaeodepositional environment and provenance. Journal of Asian Earth Sciences: X, 9 (2023) 100150.
Šujan, M., Aherwar, K., Vojtko, R., Braucher, R., Šarinová, K., Chyba, A., Hók, J., Grizelj, A., Pipík, R., Lalinská-Voleková, B., Rózsová, B., Team, A. Stratigraphic, sedimentological, geochemical, mineralogical and geochronological data characterizing the Upper Miocene sequence of the Turiec Basin, Western Carpathians (Central Europe). Data Brief 52 (2024) 109810.
Al-Ojaili, W.A.Q., Shalaby, M.R., Bauer, W. Reservoir quality evaluation of the Narimba Formation in Bass Basin, Australia: Implications from petrophysical analysis, sedimentological features, capillary pressure and wetting fluid saturation. Energy Geoscience, 5(1) (2024) 100220.
Blatt, H., Middleton, G., Murray, R. Origin of Sedimentary Rocks. Prentice-Hall, New Jersey (1980).
Fallatah, M.I., Alnazghah, M., Kerans, C., Al-Hussaini, A. Sedimentology and carbon isotope stratigraphy from the Late Jurassic – Early Cretaceous of the Arabian plate: The Weissert event and the VOICE in the Tethys Realm? Mar. Pet. Geol. 161 (2024) 106670.
Ferreira, L.d.O., Chagas, V.E., Bobco, F.E.R., de Souza, D.C., Salgado-Campos, V.M.J., Sedorko, D., Neves, M., Silveira, L.F., Mendonça Filho, J.G., Araújo, B.C., Borghi, L. Tracking environmental changes in an Early Cretaceous epicontinental sea: Sedimentology and geochemistry of the Romualdo Formation (Araripe Basin, NE Brazil). Cret. Res. 166 (2025) 105986.
Mohammadi, Z., Capezzuoli, E., Claes, H., Alipoor, R., Muchez, P., Swennen, R. Substrate geology controlling different morphology, sedimentology, diagenesis and geochemistry of adjacent travertine bodies: A case study from the Sanandaj-Sirjan zone (western Iran). Sediment. Geol. 389 (2019) 127-146.

Archivos adicionales
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 © Autores; Licencia Universidad de Pamplona

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
© Autores; Licencia Universidad de Pamplona.