Esta es un versión antigua publicada el 2023-07-24. Consulte la versión más reciente.

Foconductividad persistente en fibras de titanato de estroncio, estimación de trampas superficiales y profundas

Autores/as

  • Diego Landinez Universidad del Valle
  • Jorge Enrique Rueda Departamento de Física, Grupo Óptica Moderna, Universidad de Pamplona, CP 543050, Pamplona, Colombia
  • Antonio Carlos Hernandes Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, CEP 13566-970, SP, Brazil

DOI:

https://doi.org/10.24054/bistua.v21i1.2404

Palabras clave:

Fotoconductividad persistente, Técnica LHPG , Titanato de estroncio, Crecimiento de fibras monocristalinas

Resumen

Se reporta el crecimiento de fibras monocristalinas de SrTiO3 utilizando la técnica LHPG, en las cuales se observó fotoconductividad persistente (PPC). El estudio se realizó en tres casos de inducción de fotoconductividad persistente. Se determinó el tiempo medio de la PPC en cada caso, a partir de la estimación de los tiempos de vida de los portadores de carga en los estados de recombinación y de trampas. También se estimó la presencia de trampas superficiales y profundas, junto con sus respectivas energías de activación.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Jiang, "Persistent photoconductivity in II-VI and III-V semiconductor alloys and a novel infrared detector," Journal of Applied Physics, vol. 69, no. 9, pp. 6701-6703, 1991, DOI: 10.1063/1.348889.

Reemts, "Persistent photoconductivity in highly porous ZnO films," Journal of Applied Physics, vol. 101, no. 1, p. 013709, 2007, DOI: 10.1063/1.2407264.

Poole, "Large Persistent Photoconductivity in Strontium Titanate at Room Temperature," MRS Proceedings, vol. 1792, p. mrss15--2090706, 2015, DOI: 10.1557/opl.2015.531.

Jia, "Unraveling the Mechanism of the Persistent Photoconductivity in Organic Phototransistors," Advanced Functional Materials, vol. 29, no. 45, p. 1905657, 2019, DOI: 10.1002/adfm.201905657.

Bachí, "Propiedades fotoconductoras de monocristales y láminas delgadas de titanato de estroncio," Universidad Nacional de Tucumán, 2017.

Reyes, "Single-crystal SrTiO3 fiber grown by laser heated pedestal growth method: influence of ceramic feed rod preparation in fiber quality," Materials Research, vol. 1, no. 1, pp. 11-17, 1998, DOI: 10.1590/S1516-14391998000100004.

Tarun, "Persistent Photoconductivity in Strontium Titanate," Physical Review Letters, vol. 111, no. 18, p. 187403, 2013, DOI: 10.1103/PhysRevLett.111.187403.

Guzmán, "Estudio de trampas y centros de recombinación en películas delgadas de compuestos híbridos orgánicos/inorgánicos con estructura Perovskita," Universidad Nacional, 2019.

Rueda J.E, Hernandes A.C., "Growth of monocrystalline stronium titanate fibers by laser melting," in Iberoamerican congress on surface, materials and vacuum applications and xxxv brazilian congress on vacuum applications in industry and science (Congresso), vol. 1, no. 1, 2015.

Rueda J.E, Hernandes A.C., "Monocrystalline fiber growth technique: New critical radius consider," Journal of Crystal Growth, vol. 5, 2021, DOI: j.jcrysgro.2021.126199.

V.V. Prokofiev, J.P. Andreeta, C.J. de Lima, M.R.B. Andreeta, A.C. Hernandes, J.F. Carvalho, A.A. Kamshilin, T. Jaaskelainen, "The influence of temperature gradients on structural perfection of single-crystal sillenite fibers grown by the LHPG method," Optical Materials, vol. 4, pp. 521-527, 1995, DOI: 0925-3467(94)00123-5.

M.R.B. Andreeta, E.R.M. Andreeta, A.C. Hernandes, R.S. Feigelson, "Thermal gradient control at the solid-liquid interface in the laser-heated pedestal growth technique," Journal of Crystal Growth, vol. 234, pp. 754-761, 2002, DOI: S0022-0248(01)01736-5.

G. Boulon, M. Ito, C. Goutaudier, Y. Guyot, "Advances in growth of fiber crystal by the LHPG technique. Application to the optimization of Yb3+-doped CaF2 laser crystals," Journal of Crystal Growth, vol. 292, pp. 230-235, 2006, DOI: j.jcrysgro.2006.04.020.

P-Y Chen, C-L Chang, C-W Lan, W-H Cheng, S-L Huang, "Two-Dimensional simulations on heat transfer and fluid flow for yttrium aluminium garnet single-crystal fiber in Laser-Heated Pedestal Growth System," Jpn. J. Appl. Phys., vol. 48, pp. 115504-115507, 2009, DOI: 10.1143/JJAP.48.115504.

M.R.B. Andreeta, A.C. Hernandes, "Laser-Heated Pedestal Growth of Oxide Fibers," Handbook of Crystal Growth, Part.B Crystal Growth from Melt Techniques, Springer, 2010, pp. 393-432, DOI: 978-3-540-74761-1_13.

Bera, S., Ohodnicki, P., Collins, K., et al, Liu, B., Buric, M., "Dopant segregation in YAG single crystal fibers grown by the laser heated pedestal growth technique," Journal of Crystal Growth, vol. 547, p. 125801, 2020, DOI: j.jcrysgro.2020.125801.

Y. Lu, D. Jia, F. Gao, T. Hu, Z. Chen, "First-principle calculations of the thermal properties of SrTiO3 and SrO(SrTiO3)n (n=1,2)," Solid State Communications, vol. 201, pp. 25-30, 2015, DOI: j.ssc.2014.09.011.

K. Nassau, A.E. Miller, "Strontium titanate: an index to the literature on properties and the growth of single crystals," Journal of Crystal Growth, vol. 91, pp. 373-381, 1988, DOI: 0022-0248(88)90254-0.

F. Kamutzki, C. Guguschev, D. J. Kok, R. Bertram, U. Juda and R. Uecker, "The influence of oxygen partial pressure in the growth atmosphere on the coloration of SrTiO3 single crystal fibers," CrystEngComm, vol. 18, p. 5658, 2016, DOI: 10.1039/C6CE01109H.

Rueda-P, Jorge-E ; Hernandes, C.A., "Crecimiento de fibras mono-cristalinas de titanate de estroncio utilizando la técnica LHPG," Revista Bistua, vol. 13, no. 2, pp. 24-28, 2015.

JPG

Archivos adicionales

Publicado

2023-07-24

Versiones

Cómo citar

Landinez, D., Rueda, J. E., & Hernandes, A. C. (2023). Foconductividad persistente en fibras de titanato de estroncio, estimación de trampas superficiales y profundas. BISTUA Revista De La Facultad De Ciencias Básicas, 21(1), 23–30. https://doi.org/10.24054/bistua.v21i1.2404

Número

Sección

Artículo

Artículos más leídos del mismo autor/a