This is an outdated version published on 2023-05-09. Read the most recent version.

Mineralogical and geochemical characterization of the Au-Ag vetiform mineralization of the Aserradero Stream, municipality of California, Santander (Colombia): geometalurgic implications

Authors

  • Carolina Santamaría-Galvis Universidad Industrial de Santander
  • Carlos Rios Universidad Industrial de Santander
  • Walter Pardave-Livia Universidad de Santander

DOI:

https://doi.org/10.24054/bistua.v21i1.2328

Keywords:

genetic profile

Abstract

The mining district of Vetas-California is a mining reference in the Santander massif, characterized by the presence of hydrothermal and porphyry mineralizations. A series of vetiform and brechoid mineralizations develop near the La Baja brook under a structural domain related to local tectonic structures as La Baja, Móngora and Angosturas faults and associated minor faults. In the study area there are 22 veins parallel to each other with a NE heading and diving 75-80° to the North. Based on the mineralogical analysis performed on six thin sections by means of optical microscopy and scanning electron microscopy along with the diffraction analysis of X-ray this deposit is classified as medium to high sulfidation hydrothermal. Hydrothermal alteration minerals include quartz, clays (illite and kaolinite), pyrite, sericite, muscovite and alunite. The phases of hydrothermal alteration include argillic, advanced argillic, silicification and phyllic. Au-Ag mineralization is associated with alteration argillic and phyllic. The optimum degree of release for pyrite was achieved with 100 mesh, this result was obtained from the grinding of the mineral head and its analysis under a microscope. The presence of clay minerals from the kaolinite group, predominantly dickite, represents an inconvenience to achieve an effective milling and flotation process due to the decrease in the flow of the mineral processing, decrease in the recovery of minerals of interest due to a consequent increase in viscosity. In addition, its presence implies a greater economic expense due to the need to use reagents for the flotation process and tailings thickening. The hydrothermal system was derived from an alkaline tracing magma and the deposit is defined as an alkaline rock-hosted medium to high sulfur hydrothermal gold deposit.

Downloads

Download data is not yet available.

References

N.C. White and J.W. Hedenquist, 1990, “Epithermal environments and styles of mineralization: Variations and their causes, and guidelines for exploration”, Journal of Geochemical Exploration, 36(1–3), pp. 445–474. doi: 10.1016/0375-6742(90)90063-G.

J.P. Richards, 2009, “Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere”, Geology, 37(3), pp. 247–250. doi: 10.1130/G25451A.1.

N.C. White and J.W. Hedenquist, 1995, “Epithermal Gold Deposits: Styles, Characteristics and Exploration”. Society of Economic Geologists Newsletter, 1(23), pp. 9–13.

L. Waldemar, 1922, “A suggestion for the terminology of certain mineral deposits”, Economic Geology, 17(4), pp. 292–294. doi: 10.2113/gsecongeo.17.4.292.

L. Waldemar, 1933, “Mineral deposits”. McGraw-Hill Book Company, Inc. Fourth edition, Vol. 3, Nueva York, Estados Unidos de America. ISBN: 0548807906.

J.W. Hedenquist, A. Arribas and E. Gonzalez-Urien, 2000, “Exploration for epithermal gold deposits”, Reviews in Economic Geology, 13, pp. 245–278.

S.F. Simmons, N.C. White and D.A. John, 2005, “Geological Characteristics of Epithermal Precious and Base Metal Deposits”, Economic Geology, 17, pp. 485-522. doi: 10.2113/gsecongeo.17.4.292.

S.F. Simmons and K.L. Brown, 2006, “Gold in magmatic hydrothermal solutions and the rapid formation of a giant ore deposit”, Science, 314(5797), pp. 288–291. October 2006. ISSN: 1095-9203. doi: 10.1126/science.1132866.

J.P. Richards and A.H. Mumin, 2013, “Magmatic-hydrothermal processes within an evolving Earth: Iron oxide-copper-gold and porphyry Cu ± Mo ± Au deposits”, Geology, 41(7), pp. 767–770. doi: 10.1130/G34275.1.

O. Banks, D.A. Bozkaya, G. and O. Bozkaya. 2019, “Direct observation and measurement of Au and Ag in epithermal mineralizing fluids”, Ore Geology Reviews, 111, 102955. doi: 10.1016/j.oregeorev.2019.102955

J.W. Hedenquist, 1986, “Mineralization Associated with Volcanic-Related Hydrothermal Systems in Circum-Pacific Basin”, AAPG Bulletin, 70, Abstract. doi: 10.1306/9488648e-1704-11d7-8645000102c1865d.

R.W. Henley and A.J. Ellis, 1983, “Geothermal systems ancient and modern: a geochemical review”, Earth-Science Reviews, 19, pp. 4-10. January 1983. ISSN: 0012-8252. doi: 10.1016/0012-8252(83)90075-2.

P.B. Barton and B.J. Skinner, 1979, “Sulfide mineral stabilities”. In: H.L. Barnes, ed., Geochemistry of Hydrothermal Ore Deposits. Wiley Interscience. Second edition. New York, Estados Unidos de America, pp. 278-403. ISBN: 0471050563.

F.L. Ransome, 1907, “The association of alunite with gold in the Goldfield district, Nevada”. Economic Geology, 2, pp. 667-692. doi: 10.2113/gsecongeo.2.7.667.

J.W. Hedenquist and J.B. Lowenstern, 1994, “The role of magmas in the formation of hydrothermal ore deposits”, Nature, 370, pp. 519-527. doi: 10.1038/370519a0.

P. Heald, N.K. Foley and D.O. Hayba, 1987, “Comparative anatomy of volcanic-hosted epithermal deposits: Acid sulfate and adularia-sericite types”, Economic Geology, 82(1), pp. 1-26. doi: 10.2113/gsecongeo.82.1.1.

L. Wang, K.Z. Qin, G.X. Song and G.M. Li, 2019, “A review of intermediate sulfidation epithermal deposits and subclassification”, Ore Geology Reviews, 107(19), pp. 434–456. doi: 10.1016/j.oregeorev.2019.02.023.

R. Mathur, J. Ruiz, P. Herb, L. Hahn and K.P. Burgath, 2003, “Re-Os isotopes applied to the epithermal gold deposits near Bucaramanga, northeastern Colombia”, Journal of South American Earth Sciences, 15(7), pp. 815–821. doi: 10.1016/S0895-9811(02)00126-8.

J.L. Pindell and S.F. Barret, 1991, “Geological evolution of the Caribean region: A plate-tectonic perspective”, The Geological Society of America. doi: 10.1130/DNAG-GNA-H.405.

R.H. Sillitoe, 1972, “A plate tectonic model for the origin of porphyry copper deposits”, Economic Geology, 67(2), pp. 184-197. doi: 10.2113/gsecongeo.67.2.145.

M.A. Skewes and C.R. Stern, 1994, “Tectonic trigger for the formation of late Miocene Cu-rich breccia pipes in the Andes of central Chile”, Geology, 22(6), pp. 551–554. doi: 10.1130/0091-7613(1994)022<0551:TTFTFO>2.3.CO;2.

S.M. Kay and C. Mpodozis, 2001, “Central Andean Ore deposits linked to evolving shallow subduction systems and thickening crust”, GSA Today, 11(3), pp. 4–9. doi: 10.1130/1052-5173(2001)011<0004:CAODLT>2.0.CO;2.

L.C. Mantilla, T. Bissig, J.M. Cottle and C. Hart, 2012, “Remains of early Ordovician mantle-derived magmatism in the Santander Massif (Colombian Eastern Cordillera)”, Journal of South American Earth Sciences, 38, pp. 1-12. doi: 10.1016/j.jsames.2012.03.001.

L.C. Mantilla, T. Bissig, V. Valencia and C. Hart, 2013, “The magmatic history of the Vetas-California mining district, Santander Massif, Eastern Cordillera, Colombia”, Journal of South American Earth Sciences, 45, pp. 235-249. doi: 10.1016/j.jsames.2013.03.006.

A.L. Rodríguez, 2014, “Geology, Alteration, Mineralization and Hydrothermal Evolution of the La Bodega-La Mascota deposits, California-Vetas Mining District, Eastern Cordillera of Colombia , Northern Andes”. The University of British Columbia. 2014.

S. Amaya and C.A. Zuluaga, 2017, “New fission-track age constraints on the exhumation of the central Santander Massif: Implications for the tectonic evolution of the Northern Andes, Colombia”, Lithos, 282-283, pp. 388-402. doi: 10.1016/j.lithos.2017.03.019.

C.A. García and C.A. Ríos, 2004, “Occurrence and significance of the polymorphs of Al2SiO5 in metamorphic rocks of the Santander Massif, Eastern Cordillera (Colombian Andes)”, Boletín de Geología, 26(43), pp. 23-38.

L.C. Mantilla, C.A. Garcia and V.A. Valencia, 2016, “Nuevas evidencias que soportan la escisión de la formación Silgará y propuesta de un nuevo marco estratigráfico para el basamento metamórfico del Macizo de Santander (Cordillera Oriental de Colombia)”, Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 40, pp. 320-336. doi: 10.18257/raccefyn.303.

C.A. García and E. Uribe, 2006, “Caracterización Geológica Y Mineralógica Del Yacimiento La Tosca (Vetas, Santander, Colombia): Implicaciones Para El Procesamiento Mineral De Las Menas Auroargentíferas”, Boletín de Geología, 28(2), pp. 63-76.

S. Spencer and D. Sutherland, 2000, “Stereological correction of mineral liberation grade distributions estimated by single sectioning of particles”, Image Analysis & Stereology, 19, pp. 175-182. doi: 10.5566/ias.v19.p175-182.

V.Q. Maizé, 2005, “Estudio mineragráfico y determinación microscópica del grado de liberación de los minerales sulfurados de cobre”, Tesis de Pregrado, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú.

W. Petruk, 1981, “Chemical and metallurgical analysis for performance assessment. Evaluation and optimization of metallurgical performance”. Eds. D. Malhotra, R.R. Klimpel and A.L. Mular. AIME, pp. 181-191.

C. Ojeda-Escamilla, E. Romo-Rojas, J.F. Medina-Castilleja y J.L. Reyes-Bahena, 2005, Caracterización mineralógica aplicada al proceso de beneficio de minerales. XXVI Convención Intermacional de Minería, Veracruz, México.

BISTUA-2328

Published

2023-05-09 — Updated on 2023-05-09

Versions

How to Cite

Santamaría-Galvis, C., Rios, C., & Pardave-Livia , W. (2023). Mineralogical and geochemical characterization of the Au-Ag vetiform mineralization of the Aserradero Stream, municipality of California, Santander (Colombia): geometalurgic implications . BISTUA REVISTA DE LA FACULTAD DE CIENCIAS BASICAS, 21(1). https://doi.org/10.24054/bistua.v21i1.2328

Issue

Section

Paper