Microbiota associated with agroforestry cocoa plantations and its impact on abiotic stress tolerance
DOI:
https://doi.org/10.24054/cyta.v8i1.2877Keywords:
microbial diversity, symbiosis, sustainability, resilience, productivityAbstract
This study investigated the symbiotic relationship between microbiota and cocoa agroforestry plantations, focusing on how this interaction enhances abiotic stress tolerance under adverse conditions such as droughts, salinity, and climate changes. A systematic literature review methodology was employed, wherein articles were selected from academic databases using specific inclusion criteria to ensure the relevance and quality of the analyzed information. The research highlighted how the diversity and presence of soil microorganisms significantly contribute to the resilience of cocoa through improved nutrient uptake, root system strengthening, and the activation of physiological responses. These mechanisms underscore the ability of cocoa plantations to cope with abiotic stress and emphasize the importance of promoting such interactions for the sustainable development of the crop under varying environmental conditions. Furthermore, practical implications for agricultural management were discussed, focusing on enhancing soil microbiota health and diversity through sustainable agronomic practices and the use of beneficial microorganisms. These strategies are vital not only for cocoa production but also for global food security. In conclusion, the study provides evidence supporting the implementation of more effective and sustainable management strategies that enhance the productivity and resilience of agroforestry systems in response to climate change and other environmental pressures, thereby contributing to the maintenance of agricultural and ecological sustainability.
Downloads
References
Alori, E. T., Glick, B. R., & Babalola, O. O. (2017). Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology, 8, 971. DOI: https://doi.org/10.3389/fmicb.2017.00971
Altieri, M. A., & Nicholls, C. I. (2017). Agroecología: bases científicas para una agricultura sustentable. Nordan Comunidad.
Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206-216. DOI: https://doi.org/10.1016/j.envexpbot.2005.12.006
Badri, D. V., Weir, T. L., van der Lelie, D., & Vivanco, J. M. (2009). Rhizosphere chemical dialogues: plant– microbe interactions. Current Opinion in Biotechnology, 20(6), 642-650. DOI: https://doi.org/10.1016/j.copbio.2009.09.014
Baldani, J. I., Rouws, L., Cruz, L. M., et al. (2014). The Family Rhizobiaceae. In Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., & Thompson, F. (Eds.), The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Springer.
Baltruschat, H., Fodor, J., Harrach, B. D., Niemczyk, E., Barna, B., Gullner, G., Janeczko, A., & Kogel, K. H. (2008). Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytologist, 180(2), 501-510. DOI: https://doi.org/10.1111/j.1469-8137.2008.02583.x
Barrios, E., González-Espinosa, M., & Williams-Linera, G. (2021). Agroforestry and restoration of cloud forest landscapes in tropical mountain regions. In Agroforestry Landscapes for Mountain Communities (pp. 173-188). Springer, Cham.
Barea, J. M., Toro, M., Orozco, M. O., Campos, E., & Azcón, R. (2005). The application of isotopic (32P and 15N) dilution techniques to evaluate the interactive effect of phosphate-solubilizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops. Nutrient Cycling in Agroecosystems, 73(2-3), 41-52.
Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. A. H. M. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478-486.
Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. A. H. M. (2018). The rhizosphere microbiome and plant health. Trends in Plant Science, 23(6), 478-486. DOI: https://doi.org/10.1016/j.tplants.2012.04.001
Berruti, A., Lumini, E., Balestrini, R., & Bianciotto, V. (2016). Arbuscular mycorrhizal fungi as natural biofertilizers: let's benefit from past successes. Frontiers in Microbiology, 6, 1559. DOI: https://doi.org/10.3389/fmicb.2015.01559
Bonfante, P., & Genre, A. (2010). Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nature Communications, 1(1), 48. DOI: https://doi.org/10.1038/ncomms1046
Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L., & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807–838. DOI: https://doi.org/10.1146/annurev-arplant-050312-120106
Bunn, C., Läderach, P., Ovalle Rivera, O., Kirschke, D. (2018). A bitter cup: climate change profile of global production of Arabica and Robusta coffee. Climatic Change, 129(1–2), 89–101. DOI: https://doi.org/10.1007/s10584-014-1306-x
Bunn, C., Läderach, P., Rivera, O. O., et al. (2015). Predicting the impact of climate change on the cocoagrowing regions in Ghana and Côte d'Ivoire. Climatic Change, 119(3-4), 841-854. DOI: https://doi.org/10.1007/s10584-013-0774-8
Castellanos González, L., González Pedraza, A. F., & Capacho Mogollón, A. (2019). Influencia de los sistemas agroforestales del Proyecto Plantar sobre la macrofauna del suelo [Influence of agroforestry systems of the Plantar Project on soil macrofauna]. Revista Bistua, 17(3), 105-116. file:///C:/Users/ANA%20GONZALEZ/Downloads/admin,+12.+Influencia+de+los+sistemas+agroforestales1.pdf DOI: https://doi.org/10.24054/01204211.v3.n3.2019.3571
Caporaso, J. G., Lauber, C. L., Walters, W. A., et al. (2012). Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME Journal, 6(8), 1621-1624. DOI: https://doi.org/10.1038/ismej.2012.8
Cruz-Martínez, K., Rosling, A., Zhang, Y., et al. (2012). Effect of rainfall-induced soil heterogeneity on the diversity of soil bacteria. Applied and Environmental Microbiology, 78(20), 7687–7695. DOI: https://doi.org/10.1128/AEM.00203-12
Dimkpa, C. O., Singh, U., Adisa, I. O., Bindraban, P. S., & Elmer, W. H. (2019). Garí, a fermented cassava product, increases plant growth promotion abilities of native endophytic bacteria and decreases aluminum phytotoxicity. Applied Soil Ecology, 144, 110–118.
Durán, P., Thiergart, T., Garrido-Oter, R., Agler, M., Kemen, E., Schulze-Lefert, P., & Hacquard, S. (2018). Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell, 175(4), 973-983. DOI: https://doi.org/10.1016/j.cell.2018.10.020
FAO. (2017). Agroecología: Principios y estrategias para el diseño y la gestión de sistemas agrícolas sostenibles. Recuperado de http://www.fao.org/3/a-i7463s.pdf
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29(1), 185-212. DOI: https://doi.org/10.1051/agro:2008021
Fierer, N., Bradford, M. A., & Jackson, R. B. (2007). Toward an ecological classification of soil bacteria. Ecology, 88(6), 1354-1364. DOI: https://doi.org/10.1890/05-1839
Fotopoulos, V., Gilbert, M. J., Pittman, J. K., et al. (2013).The monoterpene limonene in orange peels attracts pests and microorganisms. Plant Signaling & Behavior, 8(9), e30530.
García-Oliva, F., Masera, O. R., & Moreno, J. M. (2020). El cambio de uso de suelo y las emisiones de CO2: desafíos y oportunidades para la mitigación. Investigación Ambiental, 12(1), 13-25.
García-Salamanca A, Molina-Henares MA, van Dillewijn P, et al. (2013) Bacterial diversity in the rhizosphere of maize and the surrounding carbonate-rich bulk soil. Microbial Biotechnology, 6(1), 36-44. DOI: https://doi.org/10.1111/j.1751-7915.2012.00358.x
Giller, K. E., Witter, E., Corbeels, M., et al. (2011). Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crops Research, 124(3), 229-245. DOI: https://doi.org/10.1016/j.fcr.2011.04.010
Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica, 2012, 963401. DOI: https://doi.org/10.6064/2012/963401
Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169(1), 30-39. DOI: https://doi.org/10.1016/j.micres.2013.09.009
Gómez-Baggethun, E., de Groot, R., Lomas, P. L., & Montes, C. (2013). The history of ecosystem services in economic theory and practice: From early notions to markets and payment schemes. Ecological Economics, 120, 289-297.
González García, H., González-Pedraza, A. F., Pineda, M., Escalante, H., Rodríguez Yzquierdo, G. A., & Soto Bracho, A. (2021). Microbiota edáfica en lotes de plátano con vigor contrastante y su relación con propiedades del suelo. Bioagro, 33(2), 143-148. https://doi.org/10.51372/bioagro332.8 DOI: https://doi.org/10.51372/bioagro332.8
González-García, H., González-Pedraza, A. F., RodríguezYzquierdo, G., León-Pacheco, R., & BetancourtVásquez, M. (2021). Vigor en plantas de plátano (Musa AAB cv. Hartón) y su relación con características físicas, químicas y biológicas del suelo. Agronomía Costarricense, 45(2), 115-134. https://dx.doi.org/10.15517/rac.v45i2.47772 DOI: https://doi.org/10.15517/rac.v45i2.47772
González García, H., González-Pedraza, A. F., Atencio, J., & Soto, A. (2021). Evaluación de calidad de suelos plataneros a través de la actividad microbiana en el sur del lago de Maracaibo, estado de Zulia, Venezuela [Evaluation of quality of banana soils through microbial
activity in the south the lake of Maracaibo, Zulia state, Venezuela]. Revista de la Facultad de Agronomía (LUZ), 38(2), 216-240. https://doi.org/10.47280/RevFacAgron(LUZ).v38.n2.01
González-Pedraza, A., Atencio, J., Cubillán, K., Almendrales, R., Ramírez, L., & Barrios, O. (2014). Actividad microbiana en suelos cultivados con plátano (Musa AAB subgrupo plátano cv. Hartón) con diferente vigor de plantas. Revista de la Facultad de Agronomía de la Universidad del Zulia, 31(Supl.), 526-538.
González-Pedraza Ana Francisca; Castellanos González L; Capacho Mogollón A.E. (2023). Influencia de tres modelos agroecológicos sobre la calidad del suelo en el municipio de Ocaña, Norte de Santander. Primera edición, Colección Ciencias Pecuarias y Agronomía© Sello Editorial Unipamplona. Pamplona. Universidad de Pamplona.189 p. https://books.unipamplona.edu.co/index.php/editorial/catalog/book/56
Hanumantharao, B., Natarajan, S., & Babu, S. (2020). Colonization of heat-tolerant endophytic fungi confers thermotolerance to Theobroma cacao. Journal of Applied Microbiology, 129(3), 624-634.
Hartmann, A., Schmid, M., van Tuinen, D., & Berg, G. (2008). Plant-driven selection of microbes. Plant and Soil, 321(1–2), 235-257. DOI: https://doi.org/10.1007/s11104-008-9814-y
Hasanuzzaman, M., Nahar, K., Gill, S. S., Alharby, H. F., Razafindrabe, B. H. N., & Fujita, M. (2017). Hydrogen peroxide pretreatment mitigates cadmium-induced oxidative stress in Brassica napus L.: An intrinsic study on antioxidant defense and glyoxalase systems. Frontiers in Plant Science, 8, 115. DOI: https://doi.org/10.3389/fpls.2017.00115
Jiménez-Jiménez, R. A., Rendón-Rendón, M. C., ChávezPérez, L. M. & Soler Fonseca, D. M. (2019). La polarización de los sistemas de producción pecuaria en México. Ciencia y Tecnología Agropecuaria, 4(1), 31-39. https://ojs.unipamplona.edu.co/index.php/rcyta/article/view/981/1118
Köberl, M., Müller, H., Ramadan, E. M., et al. (2011). Bacillus and Streptomyces were selected as broadspectrum antagonists against soilborne pathogens from arid areas in Egypt. FEMS Microbiology Letters, 320(1), 9-16.
Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2008). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 75(15), 5111-5120. DOI: https://doi.org/10.1128/AEM.00335-09
Lima Júnior, N. R., Do Carmo, J. B., Poloni, S., et al. (2020). Rhizosphere colonization and growth promotion of cacao (Theobroma cacao L.) by salt-tolerant endophytic bacteria. Biological Control, 151, 104384.
Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2011). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37(5), 634-663. DOI: https://doi.org/10.1111/1574-6976.12028
Meinhardt, L. W., Rincones, J., Bailey, B. A., et al. (2008). Moniliophthora perniciosa, the causal agent of witches’ broom disease of cacao, is a hemibiotrophic fungus. Mycologia, 100(6), 147-155.
Melo Pereira, G. V., Magalhães, K. T., Lorenzetii, E. R., et al. (2014). Plant growth-promoting rhizobacteria and root system functioning of Arabidopsis thaliana under drought stress. Plant and Soil, 392(1-2), 57-68.
Mulema, J. M. K., Kiremire, B. T., Mpairwe, D. R., et al. (2019). Impact of climate change on cocoa production: An assessment of vulnerability and adaptation strategies for smallholder farmers in Uganda. Agriculture & Food Security, 8(1), 16.
Muyzer, G., de Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59(3), 695-700. DOI: https://doi.org/10.1128/aem.59.3.695-700.1993
Ofek-Lalzar, M., Sela, N., Goldman-Voronov, M., Green, S. J., Hadar, Y., & Minz, D. (2014). Niche and hostassociated functional signatures of the root surface microbiome. Nature Communications, 5, 4950. DOI: https://doi.org/10.1038/ncomms5950
Pieterse, C. M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. M., & Bakker, P. A. H. M. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52, 347-375. DOI: https://doi.org/10.1146/annurev-phyto-082712-102340
Pretty, J., Toulmin, C., & Williams, S. (2006). Sustainable intensification in African agriculture. International Journal of Agricultural Sustainability, 4(2), 105-118.
Rice, R., & Greenberg, R. (2000). Cacao cultivation and the conservation of biological diversity. AMBIO: A Journal of the Human Environment, 29(3), 167-173. DOI: https://doi.org/10.1579/0044-7447-29.3.167
Rascovan, N., Carbonetto, B., Perrig, D., et al. (2016). Integrated analysis of root microbiomes of soybean and wheat from agricultural fields. Scientific Reports, 6, 28084. DOI: https://doi.org/10.1038/srep28084
Ruf, F. (2018). Cocoa agroforestry: A climate-smart approach for sustainable cocoa production. Agroforestry Systems, 92(4), 927-938.
Santos-Medellín, C., Edwards, J., Liechty, Z., et al. (2017). Root-associated fungi shared between arbuscular mycorrhizal and ectomycorrhizal conifers in a temperate forest. Frontiers in Microbiology, 8, 433.
Schroth, G., Läderach, P., Martinez-Valle, A. I., et al. (2016). Vulnerability to climate change of cocoa in West Africa: Patterns, opportunities and limits to adaptation. Science of the Total Environment, 556, 231-241. DOI: https://doi.org/10.1016/j.scitotenv.2016.03.024
Smith, S. E., & Read, D. J. (2008). Mycorrhizal Symbiosis. Academic Press.
Steinmann, P., Keiser, J., Bos, R., Tanner, M., & Utzinger, J. (2018). Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. The Lancet Infectious Diseases, 6(7), 411-425. DOI: https://doi.org/10.1016/S1473-3099(06)70521-7
Tscharntke, T., Clough, Y., Bhagwat, S. A., Buchori, D., Faust, H., Hertel, D., Hölscher, D., Juhrbandt, J., Kessler, M., Perfecto, I., & Scherber, C. (2011). Multifunctional shade-tree management in tropical agroforestry landscapes–a review. Journal of Applied Ecology, 48(3), 619-629. DOI: https://doi.org/10.1111/j.1365-2664.2010.01939.x
Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A., & Dufresne, A. (2015). The importance of the microbiome of the plant holobiont. New Phytologist, 206(4), 1196-1206. DOI: https://doi.org/10.1111/nph.13312
Vega, H., Castellanos Gonzalez, L., Céspedes , N., & Sequeda Serrano, Y. A. (2019). Control alternativo de las enfermedades fúngicas foliares en el cultivo de fresa (Fragaria x ananassa Duch) en el municipio de Pamplona, Norte de Santander. Ciencia y Tecnología Agropecuaria, 4(1), 10–21. https://ojs.unipamplona.edu.co/index.php/rcyta/article/view/910
Vlot, A. C., Dempsey, D. A., & Klessig, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, 47, 177-206. DOI: https://doi.org/10.1146/annurev.phyto.050908.135202
Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., & SkZ, A. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 184, 13-24. DOI: https://doi.org/10.1016/j.micres.2015.12.003
Wei, Z., Hu, J., Gu, Y., et al. (2018). Ralstonia solanacearum pathogen disrupts bacterial rhizosphere microbiome during an invasion. Soil Biology and Biochemistry, 118, 8-17. DOI: https://doi.org/10.1016/j.soilbio.2017.11.012
Wickramasinghe, W. A. R. T., & Pushpakumara, D. K. N. G. (2018). Agroecological approaches for sustainable agriculture. In W. A. R. T. Wickramasinghe & D. K. N. G. Pushpakumara (Eds.), Agroecological Approaches for Sustainable Agriculture (pp. 1–16). Springer.
Zargar, S. M., Nagar, P., Deshmukh, R., et al. (2019). Abiotic stress responses in plants: roles of calmodulinregulated proteins. Frontiers in Plant Science, 10, 1338.
Zomer, R. J., Neufeldt, H., Xu, J., Ahrends, A., Bossio, D., Trabucco, A., ... & Wang, M. (2017). Global tree cover and biomass carbon on agricultural land: The contribution of agroforestry to global and national carbon budgets. Scientific Reports, 7(1), 1-12. DOI: https://doi.org/10.1038/srep29987
Downloads
Published
Versions
- 2023-06-05 (3)
- 2024-04-24 (2)
- 2024-04-24 (1)
How to Cite
Issue
Section
License
Copyright (c) 2023 Germán Troya Guerrero, Vanessa Elizabeth Pino Meléndez
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.