Eficiencia y Homogeneidad espacial de la señal SERS en antenas plasm´onicas: Un estudio a escala nano y micro

Efficiency and Spatial homogeneity of the SERS signal in plasmonic antennas: A study at the nano and micro scales

Autores/as

DOI:

https://doi.org/10.24054/bistua.v22i2.3338

Palabras clave:

Antenas ´opticas, Espectroscopia Raman, plasm´onica

Resumen

Este estudio eval´ua la eficiencia y homogeneidad de la se˜nal SERS en diversas morfolog´ías de antenas ´opticas de oro utilizando 4-MBA como mol´ecula sonda. Los resultados revelan que las antenas AuFON presentan una intensidad SERS notablemente superior frente a superficies rugosas, cavidades esf´ericas y el sistema comercial Klarite. Asimismo, tanto AuFON como Klarite destacan por su homogeneidad mejorada. Estas observaciones subrayan el rol esencial de la morfolog´ía ordenada en la amplificaci´on y iniformidad de la se˜nal SERS, estableciendo a las AuFON como una plataforma prometedora para aplicaciones avanzadas de detecci´on molecular ultrasensible.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Luis Alfonso Guerra Hernández, Universidad de Pamplona, Grupo Óptica Moderna

.

Oslen Dilayder Jaimes Suarez, Grupo de investigación Óptica Moderna (GOM)-Minciencias, Departamento de F´ísica, Facultad de Ciencias Básicas, Universidad de Pamplona, Colombia.

.

Jorge-Enrique Rueda-Parada, Grupo de investigación Óptica Moderna (GOM)-Minciencias, Departamento de F´ísica, Facultad de Ciencias Básicas, Universidad de Pamplona, Colombia.

.

Citas

S. A. Maier, Plasmonics, Fundamentals and Applications.Berlin: Springer, 2007.

H. A. Atwater, “The promise of plasmonics,” Scientific American, vol. 296, no. 4, pp. 56–62, 2007.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chemical Reviews, vol. 108, no. 2, pp. 494–521, 2008.

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Advanced Materials, vol. 19, no. 22, pp. 3771–3782, 2007.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chemical Society Reviews, vol. 27, no. 4, pp. 241–250, 1998.

H. Xu, E. J. Bjerneld, M. K¨all, and L. B¨orjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Physical Review Letters, vol. 83, no. 21, p. 4357, 1999.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” Journal of Physics: Condensed Matter, vol. 14, no. 18, p. R597, 2002.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chemical Physics Letters, vol. 26, no. 2, pp. 163–166, 1974.

E. C. Le Ru and P. G. Etchegoin, Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects. Amsterdam: Elsevier, 2009.

R. Aroca, Surface-enhanced vibrational spectroscopy. John Wiley & Sons, 2006.

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys., vol. 57, no. 3, p. 783, 1985.

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” Journal of Raman Spectroscopy, vol. 36, no. 6-7, pp. 485–496, 2005.

A. Otto, “Surface-enhanced Raman scattering:“Classical” and “Chemical” origins,” in Light scattering in solids IV, vol. 54, pp. 289–418, Springer, 1984.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “SERS enhancement factors: a comprehensive study,” Journal of Physical Chemistry B, vol. 111, no. 37, pp. 13794–13803, 2007.

S. A. Meyer, B. Auguie, E. C. Le Ru, and P. G. Etchegoin, ´ “Combined SPR and SERS microscopy in the Kretschmann configuration,” J. Phys. Chem. A, vol. 116, no. 3, pp. 1000–1007, 2012.

R. Salvarezza and A. Arvia, “A modern approach to surface roughness applied to electrochemical systems,” in Modern Aspects of Electrochemistry, pp. 289–373, Springer, 1996.

P. N. Bartlett, J. J. Baumberg, P. R. Birkin, M. A. Ghanem, and M. C. Nett, “Highly ordered macroporous gold and platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres,” Chem. Mater, vol. 14, pp. 2199–2208, 2002.

S. Cintra, M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, T. A. Kelf, Y. Sugawara, and A. E. Russell, “Sculpted substrates for SERS,” Faraday Discussions, vol. 132, pp. 191–199, 2006.

S. Mahajan, M. Abdelsalam, Y. Suguwara, S. Cintra, A. Russell, J. Baumberg, and P. Bartlett, “Tuning plasmons on nano-structured substrates for NIR-SERS,” Physical Chemistry Chemical Physics, vol. 9, no. 1, pp. 104–109, 2007.

T. Kelf, Y. Sugawara, R. Cole, J. Baumberg, M. Abdelsalam, S. Cintra, S. Mahajan, A. Russell, and P. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Physical Review B, vol. 74, no. 24, p. 245415, 2006.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angleresolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Letters, vol. 5, no. 11, pp. 2262–2267, 2005.

L. A. Dick, A. D. McFarland, C. L. Haynes, and R. P. Van Duyne, “Metal film over nanosphere (MFON) electrodes for surface enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss,” The Journal of Physical Chemistry B, vol. 106, no. 4, pp. 853–860, 2002.

N. Perney, F. G. De Abajo, J. Baumberg, A. Tang, M. Netti, M. Charlton, and M. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Physical Review B, vol. 76, no. 3, p. 035426, 2007

Archivos adicionales

Publicado

2024-12-29

Cómo citar

Guerra Hernandez, L. A., Jaimes Suarez, O. D., & Rueda-Parada, J.-E. (2024). Eficiencia y Homogeneidad espacial de la señal SERS en antenas plasm´onicas: Un estudio a escala nano y micro: Efficiency and Spatial homogeneity of the SERS signal in plasmonic antennas: A study at the nano and micro scales. BISTUA Revista De La Facultad De Ciencias Básicas, 22(2), 1–12. https://doi.org/10.24054/bistua.v22i2.3338

Número

Sección

Artículo