Introducción al daño actínico y los actinomicetos como fuente prometedora de compuestos fotoprotectores ecológicos
Introduction to actinic damage and actinomycetes as a promising source for eco-friendly photoprotective compounds
DOI:
https://doi.org/10.24054/bistua.v22i1.2584Palabras clave:
Photodamage, Sunscreen, Natural Products, Actinomycetota, ActinobacteriaResumen
El uso de filtros solares es una estrategia fundamental de un esquema eficaz de fotoprotección. En la actualidad, varios filtros ultravioleta (UV) han sido cuestionados por sus efectos secundarios, principalmente los que dañan el medio ambiente. Por ello, existe una demanda para encontrar compuestos con propiedades fotoprotectoras. En este sentido, los productos naturales han sido tradicionalmente una fuente prometedora de compuestos con diversas actividades biológicas, incluidas las relacionadas con la fotoprotección. Recientemente, los productos naturales microbianos han mostrado oportunidades muy prometedoras apoyadas por los avances biotecnológicos, incluyendo las posibilidades abiertas por las herramientas asistidas por ordenador. En este escenario, varios estudios han reconocido el gran potencial del phylum Actinomycetota como fuente de compuestos con propiedades fotoprotectoras. Esta revisión examina cómo la radiación solar induce el fotodaño cutáneo, explora las estrategias de fotoprotección existentes y destaca el inmenso potencial que reside en el metabolismo especializado de los actinomicetos. Estos microorganismos ofrecen una veta rica y sin explotar para el desarrollo de productos innovadores que podrían transformar la industria de la protección solar.
Descargas
Citas
M. Chatzigianni, P. Pavlou, A. Siamidi, M. Vlachou, A. Varvaresou, and S. Papageorgiou, “Environmental impacts due to the use of sunscreen products: a mini-review,” Ecotoxicology, vol. 31, no. 9, pp. 1331–1345, Nov. 2022, doi: 10.1007/s10646-022-02592-w.
Y. Teng et al., “Ultraviolet Radiation and Basal Cell Carcinoma: An Environmental Perspective,” Front. Public Heal., vol. 9, Jul. 2021, doi: 10.3389/fpubh.2021.666528.
S. L. Schneider and H. W. Lim, “Review of environmental effects of oxybenzone and other sunscreen active ingredients,” J. Am. Acad. Dermatol., vol. 80, no. 1, pp. 266–271, Jan. 2019, doi: 10.1016/j.jaad.2018.06.033.
J. Sánchez-Suárez, E. Coy-Barrera, L. Villamil, and L. Díaz, “Streptomyces-Derived Metabolites with Potential Photoprotective Properties—A Systematic Literature Review and Meta-Analysis on the Reported Chemodiversity,” Molecules, vol. 25, no. 14, p. 3221, Jul. 2020, doi: 10.3390/molecules25143221.
S. Mishra, Richa, and R. P. Sinha, “Biotechnological exploitation of cyanobacterial photoprotective metabolites,” Vegetos, vol. 35, no. 2, pp. 281–297, Jun. 2022, doi: 10.1007/s42535-022-00347-w.
M. Nathaniel Mead, “Benefits of sunlight: a bright spot for human health.,” Environ. Health Perspect., vol. 116, no. 4, p. A167, 2008, doi: 10.1289/ehp.116-a160.
L. H. F. Mullenders, “Solar UV damage to cellular DNA: From mechanisms to biological effects,” Photochem. Photobiol. Sci., vol. 17, no. 12, pp. 1842–1852, 2018, doi: 10.1039/c8pp00182k.
S. Grether-Beck, A. Marini, T. Jaenicke, and J. Krutmann, “Photoprotection of human skin beyond ultraviolet radiation,” Photodermatol. Photoimmunol. Photomed., vol. 30, no. 2–3, pp. 167–174, Apr. 2014, doi: 10.1111/phpp.12111.
C. Marionnet, C. Pierrard, C. Golebiewski, and F. Bernerd, “Diversity of biological effects induced by longwave UVA rays (UVA1) in reconstructed skin,” PLoS One, vol. 9, no. 8, 2014, doi: 10.1371/journal.pone.0105263.
G. T. Wondrak, M. K. Jacobson, and E. L. Jacobson, “Identification of Quenchers of Photoexcited States as Novel Agents for Skin Photoprotection,” J. Pharmacol. Exp. Ther., vol. 312, no. 2, pp. 482–491, Feb. 2005, doi: 10.1124/jpet.104.075101.
P. M. Farr, J. E. Besag, and B. L. Diffey, “The Time Course of UVB and UVC Erythema,” J. Invest. Dermatol., vol. 91, no. 5, pp. 454–457, Nov. 1988, doi: 10.1111/1523-1747.ep12476577.
M. G. Kimlin, “Geographic location and vitamin D synthesis,” Mol. Aspects Med., vol. 29, no. 6, pp. 453–461, 2008, doi: 10.1016/j.mam.2008.08.005.
V. Fioletov, J. B. Kerr, and A. Fergusson, “The UV Index: Definition, Distribution and Factors Affecting It,” Can. J. Public Heal., vol. 101, no. 4, pp. I5–I9, Jul. 2010, doi: 10.1007/BF03405303.
D. I. Pattison and M. J. Davies, “Actions of ultraviolet light on cellular structures,” in Cancer: Cell Structures, Carcinogens and Genomic Instability, Basel: Birkhäuser-Verlag, 2006, pp. 131–157.
S. Beissert and K. Loser, “Molecular and Cellular Mechanisms of Photocarcinogenesis,” Photochem. Photobiol., pp. 071117035358006-???, Nov. 2007, doi: 10.1111/j.1751-1097.2007.00231.x.
B. A. Gilchrest, “Actinic Injury,” Annu. Rev. Med., vol. 41, no. 1, pp. 199–210, Feb. 1990, doi: 10.1146/annurev.me.41.020190.001215.
C. R. Taylor, R. S. Stern, J. J. Leyden, and B. A. Gilchrest, “Photoaging/photodamage and photoprotection,” J. Am. Acad. Dermatol., vol. 22, no. 1, pp. 1–15, Jan. 1990, doi: 10.1016/0190-9622(90)70001-X.
T. L. de Jager, A. E. Cockrell, and S. S. Du Plessis, “Ultraviolet Light Induced Generation of Reactive Oxygen Species,” in Ultraviolet Light in Human Health, Diseases and Environment, 2017, pp. 15–23.
W. J. Schreier, P. Gilch, and W. Zinth, “Early events of DNA photodamage,” Annu. Rev. Phys. Chem., vol. 66, no. January, pp. 497–519, 2015, doi: 10.1146/annurev-physchem-040214-121821.
G. T. Bowden, “Prevention of non-melanoma skin cancer by targeting ultraviolet-B-light signalling,” Nat. Rev. Cancer, vol. 4, no. 1, pp. 23–35, 2004, doi: 10.1038/nrc1253.
P. Karran and R. Brem, “Protein oxidation, UVA and human DNA repair,” DNA Repair (Amst)., vol. 44, pp. 178–185, Aug. 2016, doi: 10.1016/j.dnarep.2016.05.024.
M. Sander, M. Sander, T. Burbidge, and J. Beecker, “The efficacy and safety of sunscreen use for the prevention of skin cancer,” CMAJ, vol. 192, no. 50, pp. E1802–E1808, 2020, doi: 10.1503/cmaj.201085.
P. Perugini, M. Bonetti, A. C. Cozzi, and G. L. Colombo, “Topical Sunscreen Application Preventing Skin Cancer: Systematic Review,” Cosmetics, vol. 6, no. 3, p. 42, Jul. 2019, doi: 10.3390/cosmetics6030042.
C. Ulrich et al., “Prevention of non-melanoma skin cancer in organ transplant patients by regular use of a sunscreen: a 24 months, prospective, case-control study,” Br. J. Dermatol., vol. 161, pp. 78–84, Nov. 2009, doi: 10.1111/j.1365-2133.2009.09453.x.
S. Darlington, G. Williams, R. Neale, C. Frost, and A. Green, “A Randomized Controlled Trial to Assess Sunscreen Application and Beta Carotene Supplementation in the Prevention of Solar Keratoses,” Arch. Dermatol., vol. 139, no. 4, Apr. 2003, doi: 10.1001/archderm.139.4.451.
D. C. Whiteman et al., “When to apply sunscreen: a consensus statement for Australia and New Zealand,” Aust. N. Z. J. Public Health, vol. 43, no. 2, pp. 171–175, Apr. 2019, doi: 10.1111/1753-6405.12873.
C. Cole, T. Shyr, and H. Ou-Yang, “Metal oxide sunscreens protect skin by absorption, not by reflection or scattering,” Photodermatol. Photoimmunol. Photomed., vol. 32, no. 1, pp. 5–10, 2016, doi: 10.1111/phpp.12214.
N. A. Shaath, “The Chemistry of Ultraviolet Filters,” in Principles and Practice of Photoprotection, Cham: Springer International Publishing, 2016, pp. 143–157.
N. A. Shaath, “Ultraviolet filters,” Photochem. Photobiol. Sci., vol. 9, no. 4, p. 464, 2010, doi: 10.1039/b9pp00174c.
Y. Ma and J. Yoo, “History of sunscreen: An updated view,” Journal of Cosmetic Dermatology, vol. 20, no. 4. pp. 1044–1049, 2021, doi: 10.1111/jocd.14004.
P. K. Mukherjee, “Bioactive Phytocomponents and Their Analysis,” in Quality Control and Evaluation of Herbal Drugs, Elsevier, 2019, pp. 237–328.
F. Urbach, “The historical aspects of sunscreens,” J. Photochem. Photobiol. B Biol., vol. 64, no. 2–3, pp. 99–104, Nov. 2001, doi: 10.1016/S1011-1344(01)00202-0.
R. Mansuri, A. Diwan, H. Kumar, K. Dangwal, and D. Yadav, “Potential of Natural Compounds as Sunscreen Agents,” Pharmacogn. Rev., vol. 15, no. 29, pp. 47–56, Jun. 2021, doi: 10.5530/phrev.2021.15.5.
K. H. Altendorf, B. Gilch, and F. Lingens, “Biosynthesis of 4-aminobenzoic acid in Aerobacter aerogenes,” FEBS Lett., vol. 16, no. 2, pp. 95–98, Aug. 1971, doi: 10.1016/0014-5793(71)80341-1.
C. Corinaldesi, F. Marcellini, E. Nepote, E. Damiani, and R. Danovaro, “Impact of inorganic UV filters contained in sunscreen products on tropical stony corals (Acropora spp.),” Sci. Total Environ., vol. 637–638, pp. 1279–1285, 2018, doi: 10.1016/j.scitotenv.2018.05.108.
I. Schaap and D. M. E. Slijkerman, “An environmental risk assessment of three organic UV-filters at Lac Bay, Bonaire, Southern Caribbean,” Mar. Pollut. Bull., vol. 135, no. July, pp. 490–495, 2018, doi: 10.1016/j.marpolbul.2018.07.054.
L. Ouchene, I. V. Litvinov, and E. Netchiporouk, “Systemic Absorption of Common Organic Sunscreen Ingredients Raises Possible Safety Concerns for Patients,” J. Cutan. Med. Surg., vol. 23, no. 4, pp. 449–450, 2019, doi: 10.1177/1203475419856849.
A. G. Atanasov, S. B. Zotchev, V. M. Dirsch, and C. T. Supuran, “Natural products in drug discovery: advances and opportunities,” Nat. Rev. Drug Discov., Jan. 2021, doi: 10.1038/s41573-020-00114-z.
X. Vecino, J. M. Cruz, A. B. Moldes, and L. R. Rodrigues, “Biosurfactants in cosmetic formulations: trends and challenges,” Crit. Rev. Biotechnol., vol. 37, no. 7, pp. 911–923, Oct. 2017, doi: 10.1080/07388551.2016.1269053.
D. J. Cherubim, C. V. Martins, L. Fariña, and R. A. Lucca, “Polyphenols as natural antioxidants in cosmetics applications,” J. Cosmet. Dermatol., vol. 19, no. 1, pp. 33–37, Jan. 2020, doi: 10.1111/jocd.13093.
P. Muigg, J. Rosén, L. Bohlin, and A. Backlund, “In silico comparison of marine, terrestrial and synthetic compounds using ChemGPS-NP for navigating chemical space,” Phytochem. Rev., vol. 12, no. 3, pp. 449–457, Sep. 2013, doi: 10.1007/s11101-012-9256-2.
H. Malve, “Exploring the ocean for new drug developments: Marine pharmacology,” J. Pharm. Bioallied Sci., vol. 8, no. 2, p. 83, 2016, doi: 10.4103/0975-7406.171700.
M. D. Eastgate, M. A. Schmidt, and K. R. Fandrick, “On the design of complex drug candidate syntheses in the pharmaceutical industry,” Nat. Rev. Chem., vol. 1, pp. 1–16, 2017, doi: 10.1038/s41570-017-0016.
M. A. Wallace, Y.-Q. Cheng, and G. C. Currens, “Construction of a Texas Microbes-Derived New Natural Product Library for Novel Drug Discovery,” 2017, [Online]. Available: https://digitalcommons.hsc.unt.edu/srip/2017/abstracts/18/.
M. C. Y. Chang and J. D. Keasling, “Production of isoprenoid pharmaceuticals by engineered microbes,” Nat. Chem. Biol., vol. 2, no. 12, pp. 674–681, 2006, doi: 10.1038/nchembio836.
J. B. Hart, R. E. Lill, S. J. H. Hickford, J. W. Blunt, and M. H. G. Munro, “The Halichondrins: Chemistry, Biology, Supply and Delivery,” in Drugs from the Sea, Basel: KARGER, 2000, pp. 134–153.
S. Sagar, M. Kaur, and K. P. Minneman, “Antiviral Lead Compounds from Marine Sponges,” Mar. Drugs, vol. 8, no. 10, pp. 2619–2638, Oct. 2010, doi: 10.3390/md8102619.
M. C. Leal, C. Ferrier-Pagès, D. Petersen, and R. Osinga, “Coral aquaculture: applying scientific knowledge to ex situ production,” Rev. Aquac., vol. 8, no. 2, pp. 136–153, Jun. 2016, doi: 10.1111/raq.12087.
E. Belarbi, “Producing drugs from marine sponges,” Biotechnol. Adv., vol. 21, no. 7, pp. 585–598, Oct. 2003, doi: 10.1016/S0734-9750(03)00100-9.
O. K. Radjasa et al., “Highlights of marine invertebrate-derived biosynthetic products: Their biomedical potential and possible production by microbial associants,” Bioorganic Med. Chem., vol. 19, no. 22, pp. 6658–6674, 2011, doi: 10.1016/j.bmc.2011.07.017.
Archivos adicionales
Publicado
Versiones
- 2024-06-21 (4)
- 2024-06-21 (3)
- 2024-02-10 (2)
- 2024-02-10 (1)
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 © Autores; Licencia Universidad de Pamplona
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
© Autores; Licencia Universidad de Pamplona.