Efecto de diferentes condiciones de estrés sobre el crecimiento vegetativo del hongo filamentoso Acremonium chrysogenum
DOI:
https://doi.org/10.24054/bistua.v17i2.248Palabras clave:
Acremonium chrysogenum, estrés osmótico, estrés oxidativo, estrés lumínicoResumen
El hongo filamentoso Acremonium chrysogenum produce una mezcla de sustancias antibióticas, entre las que destaca la cefalosporina C. Con una participación de mercado del 50% para la cefalosporina C y sus derivados semisintéticos, desempeñan un importante rol en la industria farmacéutica. Debido a su amplio espectro de efectividad contra las bacterias Gram (+) y Gram (-), la cefalosporina C es un fármaco importante, producido únicamente por A. chrysogenum. Las condiciones ambientales inducen adaptaciones en los seres vivos, que responden modificando sus procesos biológicos para lograr su supervivencia. Estas respuestas pueden evaluarse in vitro para dilucidar el efecto del estrés fisiológico en el desarrollo. De esta manera, en este trabajo se evaluó el efecto de diferentes osmolitos, del peróxido de hidrógeno y la luz blanca sobre el crecimiento vegetativo de A. chrysogenum. Se observó un incremento del crecimiento de A. chrysogenum en condiciones de NaCl 0,5 M, mientras que frente al KCl fue osmosensible, deduciéndose una osmoadaptación al NaCl. El glicerol solamente mostró efectos inhibidores del crecimiento a concentraciones de 1M. Por otro lado, A. chrysogenum presentó tolerancia al estrés oxidativo inducido por el peróxido, incluso a concentraciones de 100 mM. Finalmente, un fotoperíodo LD (12/12) estimuló el desarrollo del hongo, mientras que en condiciones LL la tasa de crecimiento fue similar a la observada en la condición de control (DD).
Descargas
Citas
Alberti F, Foster GD, Bailey AM. (2017). Natural products from filamentous fungi and production by heterologous expression. Appl Microbiol Biotechnol. 101(2):493-500.
Bahn YS, Jung KW. (2013). Stress signaling pathways for the pathogenicity of Cryptococcus. Eukaryot Cell. 12(12):1564-77.
Bayram O, Braus GH. (2012). Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev. 36(1):1-24.
Boudreau BA, Larson TM, Brown DW, Busman M, Roberts ES, Kendra DF, McQuade KL. (2013). Impact of temperature stress and validamycin A on compatible solutes and fumonisin production in
F. verticillioides: role of trehalose-6-phosphate synthase. Fungal Genet Biol. 57:1-10.
Brandhoff B, Simon A, Dornieden A, Schumacher J. (2017). Regulation of conidiation in Botrytis cinerea involves the light-responsive transcriptional regulators BcLTF3 and BcREG1. Curr Genet. 63(5):931-949.
Brotzu G. (1948). Ricerche Su di un Nuovo Antibiotico. Lavori Dell'Instituto D'Igiene du Cagliari. 1-11.
Castrillo, M; Avalos, J. (2014). Light-Mediated Participation of the VIVID-like Protein of Fusarium fujikuroi VvdA in Pigmentation and Sevelopment. Fungal Genet Biol. 71:9–20.
Cockrell AL, Pirlo RK, Babson DM, Cusick KD, Soto CM, Petersen ER, Davis MJ, Hong CI, Lee K, Fitzgerald LA, Biffinger JC. (2015). Suppressing the Neurospora crassa circadian clock while maintaining light responsiveness in continuous stirred tank reactors. Sci Rep. 5:10691.
Chávez R, Fierro F, García-Rico RO, Vaca I. (2015). Filamentous fungi from extreme environments as a promising source of novel bioactive secondary metabolites. Front Microbiol. 9;6:903. doi: 10.3389/fmicb.2015.00903.
Dreyer J, Eichhorn H, Friedlin E, Kürnsteiner H, Kück U. (2007). A homologue of the Aspergillus velvet gene regulates both cephalosporin C biosynthesis and hyphal fragmentation in Acremonium chrysogenum. Appl Environ Microbiol. 73(10):3412-3422.
Dunlap JC, Loros JJ. (2017). Making Time: Conservation of Biological Clocks from Fungi to Animals. Microbiol Spectr. 5(3). doi: 10.1128/microbiolspec.FUNK-0039-2016.
Duran R, Cary JW, Calvo AM. (2010). Role of the osmotic stress regulatory pathway in morphogenesis and secondary metabolism in filamentous fungi. Toxins (Basel). 2(4):367-381.
Fukuda T, Naka W, Tajima S, Nishikawa T. (1996). Neutral red assay in minimum fungicidal concentrations of antifungal agents. J Med Vet Mycol. 34(5):353-6.
García-Rico RO, Fierro F. (2017). Role of G-protein alpha sub-units in the morphogenic processes of filamentous Ascomycota fungi. Rev Iberoam Micol. 34(1):1-9.
García-Rico RO, Gil-Durán C, Rojas-Aedo JF, Vaca I, Figueroa L, Levicán G, Chávez R. (2017). Heterotrimeric G protein alpha subunit controls growth, stress response, extracellular protease activity, and cyclopiazonic acid production in Penicillium camemberti. Fungal Biol. 121(9):754-762.
Greene AV, Keller N, Haas H, Bell-Pedersen D. (2003). A circadian oscillator in Aspergillus spp. regulates daily development and gene expression. Eukaryot Cell. 2(2):231-7.
Hu Y, Zhu B. (2016). Study on genetic engineering of Acremonium chrysogenum, the cephalosporin C producer. Synth Syst Biotechnol. 1(3):143-149.
Idnurm A, Heitman J. (2005). Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biol. 3(4):e95.
Karaffa L, Sándor E, Fekete E, Kozma J, Szentirmai A, Pócsi I. (2003). Stimulation of the cyanide- resistant alternative respiratory pathway by oxygen in Acremonium chrysogenum correlates with the size of the intracellular peroxide pool. Can J Microbiol. 49(3):216-20.
Kluge J, Kück U. (2018). AcAxl2 and AcMst1 regulate arthrospore development and stress resistance in the cephalosporin C producer Acremonium chrysogenum. Curr Genet. 64(3):713-727.
Liu J, Gao W, Pan Y, Liu G. (2018). Metabolic engineering of Acremonium chrysogenum for improving cephalosporin C production independent of methionine stimulation. Microb. Cell Fact. 17, (1): 87.
Liu L, Long LK, An Y, Yang J, Xu X, Hu CH, Liu G. (2013). The thioredoxin reductase-encoding gene ActrxR1 is involved in the cephalosporin C production of Acremonium chrysogenum in methionine-supplemented medium. Appl Microbiol Biotechnol. 97(6):2551-62.
Long LK, Yang J, An Y, Liu G. (2012). Disruption of a glutathione reductase encoding gene in Acremonium chrysogenum leads to reduction of its growth, cephalosporin production and antioxidative ability which is recovered by exogenous methionine. Fungal Genet Biol. 49(2):114-22.
López-Calleja AC, Cuadra T, Barrios-González J, Fierro F, Fernández FJ. (2012). Solid-state and submerged fermentations show different gene expression profiles in cephalosporin C production by Acremonium chrysogenum. J Mol Microbiol Biotechnol. 22(2):126-134.
Ochiai N, Tokai T, Nishiuchi T, Takahashi-Ando N, Fujimura M, Kimura M. (2007). Involvement of the osmosensor histidine kinase and osmotic stress-activated protein kinases in the regulation of secondary metabolism in Fusarium graminearum. Biochem Biophys Res Commun. 363(3):639-44.
Ozcengiz G, Demain AL. (2013). Recent advances in the biosynthesis of penicillins, cephalosporins and clavams and its regulation. Biotechnol Adv. 31(2):287-311.
Rangel DE, Alston DG, Roberts DW. (2008). Effects of physical and nutritional stress conditions during mycelial growth on conidial germination speed, adhesion to host cuticle, and virulence of Metarhizium anisopliae, an entomopathogenic fungus. Mycol Res. 112(Pt 11):1355-1361.
Salichos L, Rokas A. (2010). The diversity and evolution of circadian clock proteins in fungi. Mycologia. 102(2):269-78.
Samapundo S, Deschuyffeleer N, Van Laere D, De Leyn I, Devlieghere F. (2010). Effect of NaCl reduction and replacement on the growth of fungi important to the spoilage of bread. Food Microbiol. 27(6):749-56.
Schueffler A, Anke T. (2014). Fungal natural products in research and development. Nat Prod Rep. 31(10):1425-1448.
Schumacher J. (2017). How light affects the life of Botrytis. Fungal Genet Biol. 106:26-41.
Shin KS, Yu JH. (2013). Expression and Activity of Catalases Is Differentially Affected by GpaA (Ga) and FlbA (Regulator of G Protein Signaling) in Aspergillus fumigatus. Mycobiology. 41(3):145- 148.
Torrent C, Gil-Durán C, Rojas-Aedo JF, Medina E, Vaca I, Castro P, García-Rico RO, Cotoras M, Mendoza L, Levicán G, Chávez R. (2017). Role of sfk1 Gene in the Filamentous Fungus Penicillium roqueforti. Front Microbiol. 8:2424. doi: 10.3389/fmicb.2017.02424.
Velasco J, Luis Adrio J, Angel Moreno M, Díez B, Soler G, Barredo JL. (2000). Environmentally safe production of 7-aminodeacetoxycephalosporanic acid (7-ADCA) using recombinant strains of Acremonium chrysogenum. Nat Biotechnol. 18(8):857-861.
Velmurugan P, Lee YH, Venil CK, Lakshmanaperumalsamy P, Chae JC, Oh BT. (2010). Effect of light on growth, intracellular and extracellular pigment production by five pigment-producing filamentous fungi in synthetic medium. J Biosci Bioeng. 109(4):346-50.
Valderrama, N.T. & Morales-Puentes., M.E. 2016. Frutos y semillas en remanentes de bosque altoandino del Páramo de Rabanal (Boyacá, Colombia). Bistua Revista de la Facultad de Ciencias Básicas, 14(2): 141-168.
Wang H, Pan Y, Hu P, Zhu Y, Li J, Jiang X, Liu G. (2014). The autophagy-related gene Acatg1 is involved in conidiation and cephalosporin production in Acremonium chrysogenum. Fungal Genet Biol. 69:65-74.
Yoshida Y, Maeda T, Lee B, Hasunuma K. (2008). Conidiation rhythm and light entrainment in superoxide dismutase mutant in Neurospora crassa. Mol Genet Genomics. 279(2):193-202.
Archivos adicionales
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2019 BISTUA REVISTA DE LA FACULTAD DE CIENCIAS BASICAS
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
© Autores; Licencia Universidad de Pamplona.