Microplastics, the ubiquitous pollutant accompanying Climate Change: A bibliometric analysis of the context
Microplásticos, el contaminante ubicuo acompañante del Cambio Climático: Un análisis bibliométrico del contexto
DOI:
https://doi.org/10.24054/bistua.v23i2.3775Keywords:
Environmental pollution, Biogeochemical cycles, Network analysis, Greenhouse gases, Aquatic and terrestrial ecosystemsAbstract
The contamination of ecosystems by plastic fragments smaller than 5 mm in length (microplastics, MPs) and Climate Change (CC) threaten the health of terrestrial and aquatic ecosystems, biodiversity, and human existence. Because both phenomena occur simultaneously on a global scale, it is interesting to investigate whether they influence each other. Therefore, this study reviewed the state-of-the-art on the effect of MPs on CC and discussed the possible mechanisms that lead MPs to promote CC. To this end, a bibliometric analysis was conducted with publications from the Scopus database, and the discussion was complemented with information from relevant articles on the relationship between MPs and CC. The results showed that this is a developing field of knowledge, framed in five to seven clusters of study areas: sustainability, climate change and marine life, effects on organisms, components transported by MPs, methods for chemical characterization of MPs, and effects on human health. Moreover, most analyses of MPs-CC interactions are based on theoretical assumptions supported by limited empirical evidence, generally focusing on a single component. However, the few empirical studies linking the two events demonstrate that MPs pollution can intensify CC by inducing greenhouse gas (GHG) emissions through alterations in the biogeochemical cycles of water and sediments in aquatic and terrestrial ecosystems. These findings highlight the urgent need for experimental and field research to quantify and clarify the underlying mechanisms of the bidirectional interaction of MPs and CC with the environment.
Downloads
References
Baho DL, Bundschuh M, & Futter MN. 2021. Microplastics in terrestrial ecosystems: Moving beyond the state of the art to minimize the risk of ecological surprise. Global Change Biology, 27(17), 3969–3986. https://doi.org/10.1111/gcb.15724.
Leslie HA, van Velzen MJM, Brandsma SH, Vethaak AD, Garcia-Vallejo JJ, Lamoree MH. Discovery and quantification of plastic particle pollution in human blood. Environmental International. 2022 May; 163:107199. DOI: 10.1016/j.envint.2022.107199. Epub 2022 Mar 24. PMID: 35367073.
Zhu L, Zhu J, Zuo R, Xu Q, Qian Y, An L. Identification of microplastics in human placenta using laser direct infrared spectroscopy. Science of the Total Environment. 2023 Jan 15; 856(Pt 1):159060. DOI: 10.1016/j.scitotenv.2022.159060. Epub 2022 Sep 26. PMID: 36174702.
Yang Q, Peng Y, Wu X, Cao X, Zhang P, Liang Z, Zhang J, Zhang Y, Gao P, Fu Y, Liu P, Cao Z, Ding T. 2025. Microplastics in human skeletal tissues: Presence, distribution and health implications. Environment International, 196, 109316. DOI: 10.1016/j.envint.2025.109316.
Ragusa A, Notarstefano V, Svelato A, Belloni A, Gioacchini G, Blondeel C, et al. 2022. Raman microspectroscopy detection and characterisation of microplastics in human breastmilk. Polymers, 14, 2700. https://doi.org/10.3390/polym1413270.
Suescún-Bolívar LP, Granada JJ, Ramos W, Betancourt JS, Diosa JE, & Vargas E. Microplastics as Vectors for Microbial Transport: Experimental Interaction with Escherichia coli. Available at SSRN: https://ssrn.com/abstract=5234406 or http://dx.doi.org/10.2139/ssrn.5234406.
Gan Q, Cui J, & Jin B. 2023. Environmental microplastics: Classification, sources, fates, and effects on plants. Chemosphere, 313, 137559. https://doi.org/10.1016/j.chemosphere.2022.137559.
Herrera ANR & Díaz LFM. 2024. Diseño y construcción de un sistema de riego por goteo en un cultivo implementado en el ITIF (Instituto Técnico Industrial de Facatativá). INGENIERÍA: Ciencia, Tecnología e Innovación, 11(1), 254–268.
Oliveri Conti G, Ferrante M, Banni M, Favara C, Nicolosi I, Cristaldi A, et al. 2020. Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environmental Research, 187, 109677. https://doi.org/10.1016/j.envres.2020.109677.
Lopez MD, Toro MT, Riveros G, Illanes M, Noriega F, Schoebitz M, et al. 2022. Brassica sprouts exposed to microplastics: effects on phytochemical constituents. Science of the Total Environment, 823, 153796. https://doi.org/10.1016/j.scitotenv.2022.153796.
Shen M, Ye S, Zeng G, Zhang Y, Xing L, Tang W, Wen X & Liu S. 2020. Can microplastics pose a threat to ocean carbon sequestration? Marine Pollution Bulletin, 150, 110712. https://doi.org/10.1016/j.marpolbul.2019.110712.
Ford HV, Jones NH, Davies AJ, Godley BJ, Jambeck JR, Napper IE, Suckling CC, Williams GJ, Woodall LC & Koldewey HJ. 2022. The fundamental links between climate change and marine plastic pollution. Science of the Total Environment, 806(Pt 1), 150392. https://doi.org/10.1016/j.scitotenv.2021.150392.
Kakar FL, Okoye F, Onyedibe V, Hamza R, Dhar BR, Elbeshbishy E. 2023. Climate change interaction with microplastics and nanoplastics pollution. In Current Developments in Biotechnology and Bioengineering, Elsevier, pp. 387–403. https://doi.org/10.1016/B978-0-323-99908-3.00003-8.
Wu C, Ma Y, Wang D, Shan Y, Song X, Hu H, et al. 2022. Integrated microbiology and metabolomics analysis reveal plastic mulch film residue affects soil microorganisms and their metabolic functions. Journal of Hazardous Materials, 423. https://doi.org/10.1016/j.jhazmat.2021.127258.
Li S, Zhong L, Zhang B, Fan C, Gao Y, Wang M, Xiao H, & Tang X. 2024. Microplastics induced the differential responses of microbial-driven soil carbon and nitrogen cycles under warming. Journal of Hazardous Materials, 465, 133141. https://doi.org/10.1016/j.jhazmat.2023.133141.
Gao B, Yao H, Li Y, Zhu Y. 2021. Microplastic addition alters the microbial community structure and stimulates soil carbon dioxide emissions in vegetable-growing soil. Environmental Toxicology and Chemistry, 40, 352–365.
Rassaei F. 2023. Methane emissions and rice yield in a paddy soil: the effect of biochar and polystyrene microplastics interaction. Paddy and Water Environment, 21, 85–97. https://doi.org/10.1007/s10333-022-00915-5.
Chia RW, Lee JY, Lee M, Lee GS, & Jeong CD. 2023. Role of soil microplastic pollution in climate change. Science of the Total Environment, 887, 164112. https://doi.org/10.1016/j.scitotenv.2023.164112.
Crippa M, Guizzardi D, Solazzo E, Muntean M, Schaaf E, Monforti-Ferrario F, Banja M, Olivier J, Grassi G, Rossi S, & Vignati E. 2021. GHG emissions of all world countries, EUR 30831 EN, Publications Office of the European Union, Luxembourg. ISBN 978-92-76-41546-6 (online), 978-92-76-41547-3 (print). DOI: 10.2760/173513 (online), 10.2760/074804 (print). JRC126363.
Lenton TM, Xu C, Abrams JF, et al. 2023. Quantifying the human cost of global warming. Nature Sustainability, 6, 1237–1247. https://doi.org/10.1038/s41893-023-01132-6.
Ezat MM, Fahl K, & Rasmussen TL. 2024. Arctic freshwater outflow suppressed Nordic Seas overturning and oceanic heat transport during the Last Interglacial. Nature Communications, 15, 8998. https://doi.org/10.1038/s41467-024-53401-3.
Iqbal S, Xu J, Saleem Arif M, Shakoor A, Worthy FR, Gui H, Khan S, Bu D, Nader S, & Ranjitkar S. 2024. Could soil microplastic pollution exacerbate climate change? A meta-analysis of greenhouse gas emissions and global warming potential. Environmental Research, 252(Pt 2), 118945. https://doi.org/10.1016/j.envres.2024.118945.
Klasios N, Birch A, Murillo AM, & Tseng M. 2024. Warming temperatures exacerbate effects of microplastics in a widespread zooplankton species. Environmental Pollution (Barking, Essex: 1987), 349, 123918. https://doi.org/10.1016/j.envpol.2024.123918.
Cabernard L, Pfister S, Oberschelp C, et al. 2022. Growing environmental footprint of plastics driven by coal combustion. Nature Sustainability, 5, 139–148. https://doi.org/10.1038/s41893-021-00807-2.
Gao B Li Y, Zheng N, Liu C, Ren H & Yao H. 2022. Interactive effects of microplastics, biochar, and earthworms on CO2 and N2O emissions and microbial functional genes in vegetable-growing soil. Environmental research, 213, 113728. https://doi.org/10.1016/j.envres.2022.113728.
Yu Y, Li X, Feng Z, Xiao M, Ge T, Li Y & Yao H. 2022. Polyethylene microplastics alter the microbial functional gene abundances and increase nitrous oxide emissions from paddy soils. Journal of hazardous materials, 432, 128721. https://doi.org/10.1016/j.jhazmat.2022.128721
Zavala-Alarcón FL, Huchin-Mian JP, González-Muñoz MDP & Kozak ER. 2023. In situ microplastic ingestion by neritic zooplankton of the central Mexican Pacific. Environmental pollution (Barking, Essex: 1987), 319, 120994. https://doi.org/10.1016/j.envpol.2022.120994.
Royer SJ, Ferrón S, Wilson, S. T., & Karl, D. M. 2018. Production of methane and ethylene from plastic in the environment. PloS one, 13(8), e0200574. https://doi.org/10.1371/journal.pone.0200574.
Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. 2015. Ocean plankton. Structure and function of the global ocean microbiome. Science 348(6237):1261359. doi: 10.1126/science.1261359.
Laiolo E, Alam I, Uludag M, Jamil T, Agusti S, Gojobori T, Acinas SG, Gasol JM and Duarte CM. 2024. Metagenomic probing toward an atlas of the taxonomic and metabolic foundations of the global ocean genome. Front Sci 1:1038696. doi: 10.3389/fsci.2023.1038696.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 © Autores; Licencia Universidad de Pamplona

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© Autores; Licencia Universidad de Pamplona