Preparation and mechanical characterization of hybrid materials based on natural fibers, wood, and Biopoxy resin.
DOI:
https://doi.org/10.24054/aaas.v5i2.2009Keywords:
Biocompuesto, Resina termoestable, Infusión en vacioAbstract
This research was carried out with the purpose of obtaining and characterizing the mechanical behavior of hybrid materials, consisting of wood sheets with biocomposites formed between bioresin, modifying the natural fibrous reinforcement such as flax, jute, and fique. The preparation stage of the hybrid materials was carried out using the vacuum infusion process, commonly used in the preparation of conventional composite materials. For the mechanical characterization, five formulations were tested, combining for each system the type of fiber under ASTM D3039 standard. The results showed greater efficiency in mechanical properties such as modulus and tensile strength in systems containing fiber reinforcement with oak sheets, with the jute/oak system presenting the best mechanical performance. Density was estimated using the displacement method. The values showed an increase in density for combinations containing fiber/oak reinforcement. Likewise, it is noteworthy that the densities closest to the resin without reinforcement were obtained for the fique/oak system.
Downloads
References
Askeland, Donald R. Ciencia e ingeniería de los materiales. Tercera edición. Universidad de Missouri-Rolla.
Smith, W. Ciencia e ingeniería de materiales. Madrid: Editorial Paraninfo, 2004.
Franco Stupenengo. Materiales y materias primas, cap. 10 Materiales compuestos.
Rodríguez, Exequiel, y Vásquez, Analía. Propiedades mecánicas de materiales reforzados con fibras naturales. Universidad de Mar del Plata, INTEMA, Argentina.
FAO. “El año internacional de las fibras naturales 2009; ¿Por qué naturales?” Recuperado de: http://www.fao.org.ec/Fibras/AIFN_hojas.pdf [citado el 1 de diciembre de 2009].
Technical Data Sheet – Super Sap™ 100 Epoxy Resin/Super Sap™ 1000 Hardener. Updated 6/1/2010.
Parisot, André. Relaciones entre la estructura química y las propiedades de las fibras. Laboratorio Químico, Instituto Textil de Francia.
Silva Rodríguez, Francisco; Sanz Aragonés, José Emilio. (1996). “Tema 13. Las fibras textiles. 13.4. Fibras de origen animal”. Tecnología Industrial I (1ª edición). Aravaca (Madrid, España): McGrawHill/Interamericana de España, S.A.U. pp. 197-199.
Junta del Acuerdo de Cartagena. 1981. Tablas de propiedades físicas y mecánicas de la madera de roble y de otras 24 especies en Colombia. PADTREFORT. 53 p.
Summerscales, J., y Searle, T. J. VIP – Vacuum Infusion Process. “Low-pressure (vacuum infusion) techniques for moulding large composite structures”, Proceedings of the Institution of the Mechanical Engineers.
Santos, PA, Spinace, MAS, Fermoselli, KKG, y De Paoli, MA. Polyamide-6/vegetal fiber composite prepared by extrusion and injection moulding. Composites Part A: Applied Science and Manufacturing 2007; 38:2404–11.
ASTM D3039M. Standard Test Method for Tensile Properties of Polymer Matrix Composite Material. Institute for Standards Research.
NTC 907, ASTM D792-91. Plastics. Test method for density and specific gravity (relative density) of plastics by displacement.
Hidalgo, Miguel A., Muñoz, Mario F., Quintana, Karen J. Desempeño mecánico del compuesto polietileno aluminio reforzado con agro fibras continuas de fique. Facultad de Ingeniería, GITEM, Universidad Autónoma de Occidente, GMC, Universidad del Valle, Santiago de Cali.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 REVISTA AMBIENTAL AGUA, AIRE Y SUELO

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.