Estudio numérico del efecto de la presión atmosférica sobre la transferencia de calor en hornos de alta temperatura
DOI:
https://doi.org/10.24054/rcta.vi.160Palabras clave:
Hornos de calentamiento, transferencia de calor, radiación, presión atmosférica, dinámica de fluidos computacional (CFD)Resumen
En este trabajo se evalúa mediante simulaciones CFD un horno de calentamiento con el objetivo de estudiar el efecto que tiene la presión atmosférica sobre la trasferencia de calor hacia la carga. El sistema fue evaluado para las presiones del nivel del mar y de la ciudad de Bogotá. Los flujos másicos de aire y combustible fueron corregidos para mantener la potencia y el factor de aireación igual para los dos casos, debido a que estos varían con la presión. Se encontró que el calentamiento de la carga se afectó poco por el cambio en la presión, sin embargo, la forma en que fluye el calor hacía la carga si varia, teniendo que la radiación de los gases aporta un 34% de la energía total que llega a la carga a una presión de 1 atm, mientras que a una presión de 0.74 atm, pasa a aportar un 24%.
Descargas
Citas
Alvernia Acevedo, S., & Rico Bautista, D. (2017). Análisis de una red en un entorno IPV6: una mirada desde las intrusiones de red y el modelo TCP/IP. REVISTA COLOMBIANA DE TECNOLOGÍAS DE AVANZADA, 1(29).
Amell, Andrés A. 2007. “Influence of Altitude on the Height of Blue Cone in a Premixed Flame.” Applied Thermal Engineering 27(2–3): 408–12.
ANSYS Inc. 2017. ANSYS Fluent Theory Guide. 18.0. ed. Inc. ANSYS. Canonsburg, PA, USA. http://www.ansys.com.
Baukal Jr, Charles E. 2000. Heat Transfer in Industrial Combustion. CRC press. BOOK.
Bonfante, M., & Castillo, A. (2014). Integración de sistema multi-agente, ontologías y procesos de negocios como marco tecnológico de la estrategia “gobierno en línea”. REVISTA COLOMBIANA DE TECNOLOGÍAS DE AVANZADA, 1(23).
British Iron, and Steel Research Association. 1953. Physical Constants of Some Commercial Steels at Elevated Temperatures:(Based on Measurements Made at the National Physical Laboratory, Teddington). Butterworths Scienctific Publations.
Burbano, Hugo J., Jhon Pareja, and Andrés A. Amell. 2011. “Laminar Burning Velocities and Flame Stability Analysis of Syngas Mixtures at Sub- Atmospheric Pressures.” International Journal of Hydrogen Energy 36(4): 3243–52.
C. J. Torres, J. F. Archila, M. L. Tronco, M. Becker, A. J. V. Porto, A. J. Tiberti. (2013). Estudio cinemático de una plataforma robótica para agricultura. REVISTA COLOMBIANA DE TECNOLOGÍAS DE AVANZADA, ISSN: 1692-7257. 2(22).
Churchill, Stuart W., and Humbert H.S. Chu. 1975. “Correlating Equations for Laminar and Turbulent Free Convection from a Vertical Plate.” International Journal of Heat and Mass Transfer 18(11): 1323–29.
Egolfopoulos, F. N., and C. K. Law. 1991. “An Experimental and Computational Study of the Burning Rates of Ultra-Lean to Moderately-Rich H2/O2/N2laminar Flames with Pressure Variations.” Symposium (International) on Combustion 23(1): 333–40.
"Egolfopoulos, F N, and C K Law. 1990. “Chain Mechanims in the Overall Reaction Orders in Laminar Flame Propagation.” Combustion and Flame 80: 7–16. http://www.sciencedirect.com/science/article/pii/0 01021809090049W."
fives north american. 2006. “The Hallmark of High Velocity Burners.” (August): 19–20.
García, Alex M., and Andrés A. Amell. 2018. “A Numerical Analysis of the Effect of Heat Recovery Burners on the Heat Transfer and Billet Heating Characteristics in a Walking-Beam Type Reheating Furnace.” International Journal of Heat and Mass Transfer 127: 1208–22.
Han, Sang Heon, Daejun Chang, and Chang Young Kim. 2010. “A Numerical Analysis of Slab Heating Characteristics in a Walking Beam Type Reheating Furnace.” International Journal of Heat and Mass Transfer 53(19–20): 3855–3861.
"Huang, Mei-Jiau, Chia-Tsung Hsieh, Shih-Tuen Lee, and Chao-Hua Wang. 2008. “A Coupled Numerical Study of Slab Temperature and Gas Temperature in the Walking-Beam-Type Slab Reheating Furnace.” Numerical Heat Transfer, Part A: Applications 54(6): 625–46. http://www.tandfonline.com/doi/abs/10.1080/1040 7780802289475."
"Lloyd, J. R., and W. R. Moran. 1974. “Natural Convection Adjacent to Horizontal Surface of Various Planforms.” Journal of Heat Transfer 96(4): 443. http://heattransfer.asmedigitalcollection.asme.org/ article.aspx?articleid=1435958."
M. C. Bonfante, A. Castillo. (2014). Integración de sistema multi-agente, ontologías y procesos de negocios como marco tecnológico de la estrategia “gobierno en línea”. REVISTA COLOMBIANA DE TECNOLOGÍAS DE AVANZADA, ISSN: 1692-7257. 1(23).
Peters, N. 1984. “Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion.” Progress in Energy and Combustion Science 10(3): 319–39.
Prieler, Rene et al. 2016. “Prediction of the Heating Characteristic of Billets in a Walking Hearth Type Reheating Furnace Using CFD.” International Journal of Heat and Mass Transfer 92: 675–88. http://dx.doi.org/10.1016/j.ijheatmasstransfer.201 5.08.056.
Raithby, G D, and E H Chui. 1990. “A Finite-Volume Method for Predicting a Radiant Heat Transfer in Enclosures with Participating Media.” Journal of Heat Transfer 112(2): 415–23.
S. A. A. Acevedo, D. R. Bautista. (2017). Análisis de una red en un entorno IPV6: una mirada desde las intrusiones de red y el modelo TCP/IP. REVISTA COLOMBIANA DE TECNOLOGÍAS DE AVANZADA, ISSN: 1692-7257. 1(29).
Shih, T H et al. 1995. “A New K-Epsilon Eddy Viscosity Model for High Reynolds Number Turbulent Flows: Model Development and Validation.” Computer & Fluids 24(August): 227–38.
Smith, T. F., Z. F. Shen, and J. N. Friedman. 1982. “Evaluation of Coefficients for the Weighted Sum of Gray Gases Model.” Journal of Heat Transfer 104(4): 602.
Torres, C., Archila, J., Tronco, M., Becker, M., Viera Porto, A., & Tiberti, A. (2013). Estudio cinemático de una plataforma robótica para agricultura. REVISTA COLOMBIANA DE TECNOLOGÍAS DE AVANZADA, 2(22).
Touloukian, Yeram Sarkis, and David P DeWitt. 1989. Themal Radiative Properties: Metallic Elements and Alloys. UMI.
Unidad de Planeación Minero Energética-UPME. 2010. “Proyección de Demanda de Energía En Colombia.” Energia, Minero: 90. http://www.upme.gov.co/Docs/Energia/PROYEC C_DEMANDA_ENERGIA_OCTUBRE_2010.pd f.
University of California at San Diego. 2016. “Chemical- Kinetic Mechanisms for Combustion Applications.” San Diego Mechanism web page. http://combustion.ucsd.edu.
Zeng, Yi et al. 2013. “Momentum-Dominated Methane Jet Flame at Sub-Atmospheric Pressure.” Procedia Engineering 62: 924–31. http://dx.doi.org/10.1016/j.proeng.2013.08.144.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.