Modal propagation analysis in waveguides for the design of evanescent wave photonic biosensors

Authors

DOI:

https://doi.org/10.24054/rcta.v2i46.4122

Keywords:

photonic biosensors, integrated photonics, photonic waveguides

Abstract

This paper presents a modal propagation analysis of Strip and Rib waveguides with silicon and SU-8 cores, aimed at designing evanescent wave photonic biosensors. The objective was to determine structural configurations that optimize device sensitivity, focusing on single-mode and bimodal operating conditions. The study was conducted through numerical simulations using the Finite Element Method in COMSOL Multiphysics. Various combinations of materials, core heights of 220 and 600 nm, and operating wavelengths of 633 and 1550 nm were analyzed to evaluate the behavior of TE and TM propagation modes and the variation of the effective refractive index with respect to the waveguide width. The main outcome is a design table summarizing the optimal core width ranges for each configuration, serving as a practical tool for developing highly sensitive and manufacturable biosensors. Additionally, the presented methodology can be applied to the design of integrated photonic circuits in diverse fields such as telecommunications and optical computing.

Downloads

Download data is not yet available.

References

J. S. Gracias, G. S. Parnell, E. Specking, E. A. Pohl, and R. Buchanan, “Smart Cities—A Structured Literature Review,” Smart Cities 2023, Vol. 6, Pages 1719-1743, vol. 6, no. 4, pp. 1719–1743, Jul. 2023, doi: 10.3390/SMARTCITIES6040080.

N. L. Kazanskiy, M. A. Butt, and S. N. Khonina, “Optical Computing: Status and Perspectives,” Nanomaterials 2022, Vol. 12, Page 2171, vol. 12, no. 13, p. 2171, Jun. 2022, doi: 10.3390/NANO12132171.

G. Rademacher et al., “Peta-bit-per-second optical communications system using a standard cladding diameter 15-mode fiber,” Nature Communications 2021 12:1, vol. 12, no. 1, pp. 1–7, Jul. 2021, doi: 10.1038/s41467-021-24409-w.

J. Wang et al., “Sensitivity enhancement of bimodal waveguide interferometric sensor based on regional mode engineering,” Optics Express, Vol. 32, Issue 6, pp. 10274-10283, vol. 32, no. 6, pp. 10274–10283, Mar. 2024, doi: 10.1364/OE.519015.

S. Prasanna Kumaar and A. Sivasubramanian, “Design of a high-sensitivity polymer double-slot waveguide sensor for point-of-care biomedical applications,” Sensors International, vol. 5, p. 100255, Jan. 2024, doi: 10.1016/J.SINTL.2023.100255.

J. C. Ramirez, L. M. Lechuga, L. H. Gabrielli, and H. E. Hernandez-Figueroa, “Study of a low-cost trimodal polymer waveguide for interferometric optical biosensors,” Opt Express, vol. 23, no. 9, p. 11985, May 2015, doi: 10.1364/oe.23.011985.

H. Wang et al., “Optofluidic chip with directly printed polymer optical waveguide Mach-Zehnder interferometer sensors for label-free biodetection,” Biomedical Optics Express, Vol. 15, Issue 5, pp. 3240-3250, vol. 15, no. 5, pp. 3240–3250, May 2024, doi: 10.1364/BOE.523055.

C Zhao, L Xu and L Liu, Ultrahigh Sensitivity Mach-Zehnder Interferometer Sensor Based on a Weak One-Dimensional Field Confinement Silica Waveguide, Sensors Basel, vol 21, no 19, Oct 2021, doi 103390/S21196600.

N. L. Kazanskiy, S. N. Khonina, and M. A. Butt, “A Review of Photonic Sensors Based on Ring Resonator Structures: Three Widely Used Platforms and Implications of Sensing Applications,” Micromachines 2023, Vol. 14, Page 1080, vol. 14, no. 5, p. 1080, May 2023, doi: 10.3390/MI14051080.

K. M. Yoo et al., “Lab-on-a-chip optical biosensor platform: a micro-ring resonator integrated with a near-infrared Fourier transform spectrometer,” Optics Letters, Vol. 48, Issue 20, pp. 5371-5374, vol. 48, no. 20, pp. 5371–5374, Oct. 2023, doi: 10.1364/OL.492172.

A. G. Kumela et al., “A review on hybridization of plasmonic and photonic crystal biosensors for effective cancer cell diagnosis,” Nanoscale Adv, vol. 5, no. 23, pp. 6382–6399, Nov. 2023, doi: 10.1039/D3NA00541K.

F. Parandin, Z. Rahimi, A. Moloudi, F. Heidari, and M. Mehdi Parandin, “A comprehensive review of blood component detection utilizing One-Dimensional, Two-Dimensional, and photonic crystal fiber biosensors,” Results in Optics, vol. 16, p. 100671, Jul. 2024, doi: 10.1016/J.RIO.2024.100671.

E. Rafiee, “Photonic Crystal based Biosensor for Diagnosis of Kidney Failure and Diabetes,” Plasmonics, vol. 19, no. 1, pp. 439–445, Feb. 2024, doi: 10.1007/S11468-023-02014-5/METRICS.

S. Bhaskar, “Biosensing Technologies: A Focus Review on Recent Advancements in Surface Plasmon Coupled Emission,” Micromachines 2023, Vol. 14, Page 574, vol. 14, no. 3, p. 574, Feb. 2023, doi: 10.3390/MI14030574.

N. Ravindran et al., “Recent advances in Surface Plasmon Resonance (SPR) biosensors for food analysis: a review,” Crit Rev Food Sci Nutr, vol. 63, no. 8, pp. 1055–1077, 2023, doi: 10.1080/10408398.2021.1958745.

A. K. Singh, M. Anwar, R. Pradhan, M. S. Ashar, N. Rai, and S. Dey, “Surface plasmon resonance based-optical biosensor: Emerging diagnostic tool for early detection of diseases,” J Biophotonics, vol. 16, no. 7, p. e202200380, Jul. 2023, doi: 10.1002/JBIO.202200380.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon Rev, vol. 6, no. 4, pp. 463–487, Jul. 2012, doi: 10.1002/LPOR.201100025.

A. V. R. Portes et al., “Electro-optical biosensor based on embedded double-monolayer of graphene capacitor in polymer technology,” Polymers (Basel), vol. 13, no. 20, Oct. 2021, doi: 10.3390/polym13203564.

K. Okamoto, Fundamentals of Optical Waveguides, Segunda Edición. 2006.

P. Patel, Dr. V. Mishra, and A. Mandloi, “Optical Biosensors: Fundamentals & Trends,” 2010.

A. F. Gavela, D. G. García, J. C. Ramirez, and L. M. Lechuga, “Last advances in silicon-based optical biosensors,” Feb. 24, 2016, MDPI AG. doi: 10.3390/s16030285.

Published

2025-08-08

How to Cite

[1]
J. Álvarez Guerrero, J. J. Vejar Caballero, B. Medina Delgado, J. Córdoba Ramírez, and F. O. Amaya Fernández, “Modal propagation analysis in waveguides for the design of evanescent wave photonic biosensors”, RCTA, vol. 2, no. 46, pp. 181–189, Aug. 2025.

Most read articles by the same author(s)