Identification of asbestos-cement in NIR images via spectral similarity and artificial neural networks

Authors

DOI:

https://doi.org/10.24054/rcta.v1i47.4108

Keywords:

Asbestos-cement, multispectral images, spectral similarity, artificial neural networks

Abstract

This study employs airborne multispectral imagery obtained from the repository of the Environmental Public Agency of Cartagena (EPA), which provides a spatial resolution of 0.17 m/pixel. The dataset consists of four spectral bands (R, G, B, and NIR), from which 300 spectral signatures of asbestos–cement roofing and 300 signatures of other materials were extracted. The labeling was conducted through visual interpretation supported by field visits. Two configurations of the data cube were evaluated: one containing the four multispectral bands and another with five bands, generated by incorporating the first principal component obtained through PCA. Three spectral similarity measures (Cosine-Based Similarity (CBS), Spectral Distance Similarity (SDS), and Euclidean Distance Similarity (EDS)) were compared along with an artificial neural network (ANN) model. The performance was assessed using a 70–30 split based on precision, recall, F1-score, and execution time. The results indicate that EDS and CBS achieved the highest detection accuracy, with EDS being computationally more efficient (CBS was 2.22 times slower). These findings demonstrate that EDS and CBS are promising methods for the efficient detection of asbestos–cement roofing from multispectral imagery and can be extrapolated to the identification of other materials under similar spatial-resolution and data-quality conditions.

Downloads

Download data is not yet available.

References

C. Zhang, «Introduction to Remote Sensing», en Multi-sensor System Applications in the Everglades Ecosystem, 2020, pp. 31-60. doi: 10.1201/9780429075872-2.

J. Awange, «Fundamentals of Remote Sensing», en Environmental Science and Engineering, 2019, pp. 115-123. doi: 10.1007/978-3-030-03017-9_7.

W. Fu, J. Ma, P. Chen, y F. Chen, «Remote Sensing Satellites for Digital Earth», en Manual of Digital Earth, H. Guo, M. F. Goodchild, y A. Annoni, Eds., Singapore: Springer Singapore, 2020, pp. 55-123. doi: 10.1007/978-981-32-9915-3_3.

B. Zhang et al., «Remotely sensed big data: evolution in model development for information extraction [point of view]», Proc. IEEE, vol. 107, n.o 12, pp. 2294-2301, dic. 2019, doi: 10.1109/jproc.2019.2948454.

Z. Shun et al., «Research on remote sensing image extraction based on deep learning», PeerJ Computer Science, vol. 8, p. e847, ene. 2022, doi: 10.7717/peerj-cs.847.

A. M. Lechner, G. M. Foody, y D. S. Boyd, «Applications in Remote Sensing to Forest Ecology and Management», One Earth, vol. 2, n.o 5, pp. 405-412, may 2020, doi: 10.1016/j.oneear.2020.05.001.

Z. Wang, Y. Ma, Y. Zhang, y J. Shang, «Review of Remote Sensing Applications in Grassland Monitoring», Remote Sensing, vol. 14, n.o 12, p. 2903, jun. 2022, doi: 10.3390/rs14122903.

M. I. Abdulraheem, W. Zhang, S. Li, A. J. Moshayedi, A. A. Farooque, y J. Hu, «Advancement of Remote Sensing for Soil Measurements and Applications: A Comprehensive Review», Sustainability, vol. 15, n.o 21, p. 15444, oct. 2023, doi: 10.3390/su152115444.

P. Wang, X. Ma, y Q. Zhao, «Learning-based classification approach for coded aperture compressive spectral image», en International Conference on Image, Signal Processing, and Pattern Recognition (ISPP 2023), P. Batista y R. Bilas Pachori, Eds., Changsha, China: SPIE, jun. 2023, p. 137. doi: 10.1117/12.2681198.

A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, y J. Weinheimer, «Snapshot hyperspectral imaging: the hyperpixel array camera», en SPIE Proceedings, S. S. Shen y P. E. Lewis, Eds., Orlando, Florida, USA: SPIE, may 2009, p. 73340H. doi: 10.1117/12.818929.

D. Hong et al., «SpectralGPT: Spectral Remote Sensing Foundation Model», IEEE Trans. Pattern Anal. Mach. Intell., vol. 46, n.o 8, pp. 5227-5244, ago. 2024, doi: 10.1109/tpami.2024.3362475.

M. Krówczynska, E. Raczko, N. Staniszewska, y E. Wilk, «Asbestos—Cement Roofing Identification Using Remote Sensing and Convolutional Neural Networks (CNNs)», Remote Sensing, vol. 12, n.o 3, p. 408, ene. 2020, doi: 10.3390/rs12030408.

F. Frassy et al., «Mapping Asbestos-Cement Roofing with Hyperspectral Remote Sensing over a Large Mountain Region of the Italian Western Alps», Sensors, vol. 14, n.o 9, pp. 15900-15913, ago. 2014, doi: 10.3390/s140915900.

G. Bonifazi, G. Capobianco, y S. Serranti, «Asbestos containing materials detection and classification by the use of hyperspectral imaging», Journal of Hazardous Materials, vol. 344, pp. 981-993, feb. 2018, doi: 10.1016/j.jhazmat.2017.11.056.

G. Bonifazi, G. Capobianco, y S. Serranti, «Hyperspectral Imaging and Hierarchical PLS-DA Applied to Asbestos Recognition in Construction and Demolition Waste», Applied Sciences, vol. 9, n.o 21, p. 4587, oct. 2019, doi: 10.3390/app9214587.

O. Trotta, G. Bonifazi, G. Capobianco, y S. Serranti, «DETECTION OF ASBESTOS CONTAINING MATERIAL IN POST-EARTHQUAKE BUILDING WASTE THROUGH HYPERSPECTRAL IMAGING AND MICRO-X-RAY FLUORESCENCE», Detritus, n.o 21, pp. 27-34, dic. 2022, doi: 10.31025/2611-4135/2022.17233.

M. Hikuwai, N. Patorniti, A. Vieira, G. Frangioudakis Khatib, y R. Stewart, «Artificial Intelligence for the Detection of Asbestos Cement Roofing: An Investigation of Multi-Spectral Satellite Imagery and High-Resolution Aerial Imagery», Sustainability, vol. 15, n.o 5, p. 4276, feb. 2023, doi: 10.3390/su15054276.

D. Enrique Valdelamar Martínez, M. Saba, y L. K. Torres Gil, «Assessment of asbestos-cement roof distribution and prioritized intervention approaches through hyperspectral imaging», Heliyon, vol. 10, n.o 3, p. e25612, feb. 2024, doi: 10.1016/j.heliyon.2024.e25612.

G. E. Chanchí-Golondrino, M. A. Ospina-Alarcón, y M. Saba, «Proposal of a computational method for asbestos detection in hyperspectral images based on the identification of prominent peaks in the spectral signature», rev. investig. desarro. innov, vol. 15, n.o 1, pp. 119-138, mar. 2025, doi: 10.19053/uptc.20278306.v15.n1.2025.19183.

B. G. Ram, P. Oduor, C. Igathinathane, K. Howatt, y X. Sun, «A systematic review of hyperspectral imaging in precision agriculture: Analysis of its current state and future prospects», Computers and Electronics in Agriculture, vol. 222, p. 109037, jul. 2024, doi: 10.1016/j.compag.2024.109037.

N. Ghasemi, J. A. Justo, M. Celesti, L. Despoisse, y J. Nieke, «Onboard Processing of Hyperspectral Imagery: Deep Learning Advancements, Methodologies, Challenges, and Emerging Trends», IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing, vol. 18, pp. 4780-4790, 2025, doi: 10.1109/jstars.2025.3527898.

A. C. Toma, S. Panica, D. Zaharie, y D. Petcu, «Computational challenges in processing large hyperspectral images», en 2012 5th Romania Tier 2 Federation Grid, Cloud & High Performance Computing Science (RQLCG), oct. 2012, pp. 111-114. Accedido: 12 de julio de 2025. [En línea]. Disponible en: https://ieeexplore.ieee.org/document/6528260

S. Li, W. Song, L. Fang, Y. Chen, P. Ghamisi, y J. A. Benediktsson, «Deep Learning for Hyperspectral Image Classification: An Overview», IEEE Trans. Geosci. Remote Sensing, vol. 57, n.o 9, pp. 6690-6709, sep. 2019, doi: 10.1109/tgrs.2019.2907932.

M. E. Paoletti, J. M. Haut, J. Plaza, y A. Plaza, «Deep learning classifiers for hyperspectral imaging: A review», ISPRS Journal of Photogrammetry and Remote Sensing, vol. 158, pp. 279-317, dic. 2019, doi: 10.1016/j.isprsjprs.2019.09.006.

Z. Yu y W. Cui, «LSCA-net: A lightweight spectral convolution attention network for hyperspectral image processing», Computers and Electronics in Agriculture, vol. 215, p. 108382, dic. 2023, doi: 10.1016/j.compag.2023.108382.

U. Ghous, M. S. Sarfraz, M. Ahmad, C. Li, y D. Hong, «EXNet: (2+1)D Extreme Xception Net for Hyperspectral Image Classification», IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing, vol. 17, pp. 5159-5172, 2024, doi: 10.1109/jstars.2024.3362936.

Y.-L. Chang et al., «Consolidated Convolutional Neural Network for Hyperspectral Image Classification», Remote Sensing, vol. 14, n.o 7, p. 1571, mar. 2022, doi: 10.3390/rs14071571.

J. M. Bioucas-Dias et al., «Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches», IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing, vol. 5, n.o 2, pp. 354-379, abr. 2012, doi: 10.1109/jstars.2012.2194696.

X. Huang, P. Wang, S. Zhang, X. Zhao, y Y. Zhang, «Structural health monitoring and material safety with multispectral technique: A review», Journal of Safety Science and Resilience, vol. 3, n.o 1, pp. 48-60, mar. 2022, doi: 10.1016/j.jnlssr.2021.09.004.

L. Wunsch, M. Hubold, R. Nestler, y G. Notni, «Realisation of an Application Specific Multispectral Snapshot-Imaging System Based on Multi-Aperture-Technology and Multispectral Machine Learning Loops», Sensors, vol. 24, n.o 24, p. 7984, dic. 2024, doi: 10.3390/s24247984.

Y. Chen, H. Jiang, C. Li, X. Jia, y P. Ghamisi, «Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks», IEEE Trans. Geosci. Remote Sensing, vol. 54, n.o 10, pp. 6232-6251, oct. 2016, doi: 10.1109/TGRS.2016.2584107.

E. Maggiori, Y. Tarabalka, G. Charpiat, y P. Alliez, «Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification», IEEE Trans. Geosci. Remote Sensing, vol. 55, n.o 2, pp. 645-657, feb. 2017, doi: 10.1109/TGRS.2016.2612821.

F. Melgani y L. Bruzzone, «Classification of hyperspectral remote sensing images with support vector machines», IEEE Trans. Geosci. Remote Sensing, vol. 42, n.o 8, pp. 1778-1790, ago. 2004, doi: 10.1109/TGRS.2004.831865.

R. H. Yuhas, A. F. Goetz, y J. W. Boardman, «Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm», en JPL, Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop, 1992.

N. Audebert, B. Le Saux, y S. Lefèvre, «Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks», ISPRS Journal of Photogrammetry and Remote Sensing, vol. 140, pp. 20-32, jun. 2018, doi: 10.1016/j.isprsjprs.2017.11.011.

F. Martínez-Plumed et al., «CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories», IEEE Transactions on Knowledge and Data Engineering, vol. 33, n.o 8, pp. 3048-3061, 2021, doi: https://doi.org/10.1109/TKDE.2019.2962680.

J. Saltz, «CRISP-DM for Data Science: Strengths, Weaknesses and Potential Next Steps», presentado en 2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA, 2021. doi: https://doi.org/10.1109/BigData52589.2021.9671634.

C. Schröer, F. Kruse, y J. Gómez, «A Systematic Literature Review on Applying CRISP-DM Process Model.», Procedia Computer Science, vol. 181, pp. 526-534, 2021, doi: https://doi.org/10.1016/j.procs.2021.01.199.

A. M. Shimaoka, R. C. Ferreira, y A. Goldman, «The evolution of CRISP-DM for Data Science: Methods, Processes and Frameworks», Reviews, vol. 4, n.o 1, pp. 28-43, oct. 2024, doi: 10.5753/reviews.2024.3757.

D. Enrique Valdelamar Martínez, M. Saba, y L. K. Torres Gil, «Assessment of asbestos-cement roof distribution and prioritized intervention approaches through hyperspectral imaging», Heliyon, vol. 10, n.o 3, feb. 2024, doi: 10.1016/j.heliyon.2024.e25612.

Published

2026-01-01

How to Cite

[1]
“Identification of asbestos-cement in NIR images via spectral similarity and artificial neural networks”, RCTA, vol. 1, no. 47, pp. 46–61, Jan. 2026, doi: 10.24054/rcta.v1i47.4108.

Similar Articles

1-10 of 103

You may also start an advanced similarity search for this article.