Study of the influence of the conduit diameter in the fontan procedureby computational fluid dynamics
DOI:
https://doi.org/10.24054/rcta.v1i37.1200Keywords:
Fontan procedure, Computational Fluid Dynamics, CFD, conduit diameter, extracardiac, pulmonary atresiaAbstract
The objective of the present work is to study the effects of the diameter of the conduit on the extracardiac modification of the Fontan procedure using computational fluid dynamics (CFD) in the case of pulmonary atresia with univentricular anatomy. To obtain the three-dimensional anatomical model of the patient, images from MRI were used, likewise, these data were used to perform the segmentation and obtain the flow data in the superior and inferior vena cava. From the results of Post-Fontan catheterization, blood pressure was obtained in the pulmonary branches and from the hematocrit count the viscosity of the blood was estimated. The simulations were implemented in the commercial software Ansys Fluent v17 and the hemodynamics were analyzed under steady state conditions for 16 mm, 18 mm, 20 mm and 22 mm conduits, observing the effects of the change in the diameter with respect to the energy of loss and stagnation zones.
Downloads
References
A. Baretta, C. Corsini, A. Marsden, I. Vignon-Clementel, T.-Y. Hsia, G. Dubini, F. Migliavacca y G. Pennati, «Respiratory effects on hemodynamics in patient-specific CFD models of the Fontan circulation under exercise conditions», European Journal of Mechanics B/Fluids, vol. 35, pp. 61–69, 2012.
W. Yang, J. Feinstein, S. Shadden, I. Vignon-Clementel y A. Marsden, «Optimization of a Y-graft design for improved hepatic flow distribution in the Fontan circulation», Journal of Biomechanical Engineering, vol. 135, n.º 1, 2013.
A. Baretta, C. Corsini, W. Yang, I. Vignon-Clementel, A. Marsden, J. Feinstein, T. Hsia, G. Dubini, F. Migliavacca y G. Pennati, «Virtual surgeries in patients with congenital heart disease: A multi-scale modelling test case», Philosophical Transactions of the Royal Society A, vol. 369, n.º 1954, pp. 4316–4330, 2011.
J. Kennington, S. Frankel, J. Chen, S. Koenig, M. Sobieski, G. Giridharan y M. Rodefeld, «Design optimization and performance studies of an adult-scale viscous impeller pump for powered Fontan in an idealized total cavopulmonary connection», Cardiovascular Engineering and Technology, vol. 2, pp. 237–243, 2011.
T. Gundert, A. Marsden, W. Yang y J. LaDisa, «Optimization of cardiovascular stent design using computational fluid dynamics», Journal of Biomechanical Engineering, vol. 134, n.º 1, 2012.
E. Bove, M. de Leval, F. Migliavacca, R. Balossino y G. Dubini, «Toward optimal hemodynamics: Computer modeling of the Fontan circuit», Pediatric Cardiology, vol. 28, n.º 6, pp. 477–481, 2007.
J. Kennington, S. Frankel, J. Chen, M. Rodefeld y G. Giridharan, «Design of a novel cavopulmonary assist device for Fontan procedures: CFD, PIV, and hydraulic testing», en ASME 2010 Summer Bioengineering Conference, ASME, 2010.
N. Alphonso, M. Baghai, P. Sundar, R. Tulloh, C. Austin y D. Anderson, «Intermediate-term outcome following the Fontan operation: A survival, functional and risk-factor analysis», European Journal of Cardio-Thoracic Surgery, vol. 28, n.º 4, pp. 526–535, 2005.
A. Amodeo, M. Grigioni, G. Oppido, C. Daniele, G. D’Avenio, G. Pedrizzetti, S. Giannico, S. Filippelli y R. Di Donato, «The beneficial vortex and best spatial arrangement in total extracardiac cavopulmonary connection», The Journal of Thoracic and Cardiovascular Surgery, vol. 124, n.º 3, pp. 471–478, 2002.
F. Migliavacca, M. de Leval, G. Dubini, R. Pietrabissa y R. Fumero, «Computational fluid dynamic simulations of cavopulmonary connections with an extracardiac lateral conduit», Medical Engineering and Physics, vol. 21, n.º 3, pp. 187–193, 1999.
C. G. De Groff, «Modeling the Fontan circulation: Where we are and where we need to go», Pediatric Cardiology, vol. 29, n.º 1, pp. 3–12, 2008.
C. Haggerty, M. Restrepo, E. Tang, D. de Zélicourt, K. Sundareswaran, L. Mirabella, J. Bethel, K. Whitehead, M. Fogel y A. Yoganathan, «Fontan hemodynamics from 100 patient-specific cardiac magnetic resonance studies: A computational fluid dynamics analysis», The Journal of Thoracic and Cardiovascular Surgery, vol. 148, n.º 4, pp. 1481–1489, 2014.
Y. Kotani, S. Anggriawan, D. Chetan, L. Zhao, N. Liyanage, A. Saedi, C. Caldarone, G. Van Arsdell y O. Honjo, «Fate of the hypoplastic proximal aortic arch in infants undergoing repair for coarctation of the aorta through a left thoracotomy», The Annals of Thoracic Surgery, vol. 98, n.º 4, pp. 1386–1393, 2014.
D. de Zélicourt, L. Ge, C. Wang, F. Sotiropoulos, A. Gilmanov y A. Yoganathan, «Flow simulations in arbitrarily complex cardiovascular anatomies: An unstructured Cartesian grid approach», Computers & Fluids, vol. 38, n.º 9, pp. 1749–1762, 2009.
M. Cibis, K. Jarvis, M. Markl, M. Rose, C. Rigsby, A. Barker y J. Wentzel, «The effect of resolution on viscous dissipation measured with 4D flow MRI in patients with Fontan circulation: Evaluation using computational fluid dynamics», Journal of Biomechanics, vol. 48, pp. 2984–2989, 2015.
A. Marsden, I. Vignon-Clementel, F. Chan, J. Feinstein y C. Taylor, «Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection», Annals of Biomedical Engineering, vol. 35, n.º 2, pp. 250–263, 2007.
A. Marsden, A. Bernstein, M. Reddy, S. Shadden, R. Spilker, F. Chan, C. Taylor y J. Feinstein, «Evaluation of a novel Y-shaped extracardiac Fontan baffle using computational fluid dynamics», The Journal of Thoracic and Cardiovascular Surgery, vol. 137, n.º 2, pp. 394–403, 2009.
J. Liu, Y. Qian, Q. Sun, J. Liu y M. Umesu, «Use of computational fluid dynamics to estimate hemodynamic effects of respiration on hypoplastic left heart syndrome surgery: Total cavopulmonary connection treatments», The Scientific World Journal, 2013.
K. Dorniak, E. Heiberg, M. Hellman, D. Rawicz-Zegrzda, M. Wesierska, R. Galaska, A. Sabisk, E. Szurowska, M. Dudziak y E. Hedström, «Required temporal resolution for accurate thoracic aortic pulse wave velocity measurements by phase-contrast magnetic resonance imaging and comparison with clinical standard applanation tonometry», BMC Cardiovascular Disorders, vol. 16, n.º 1, pp. 110–120, 2016.
A. Lardo, S. Webber, I. Friehs, P. del Nido y E. Cape, «Fluid dynamic comparison of intra-atrial and extracardiac total cavopulmonary connections», The Journal of Thoracic and Cardiovascular Surgery, vol. 117, n.º 4, pp. 697–704, 1999.
M. Restrepo, E. Tang, C. Haggerty, R. Khiabani, L. Mirabella, J. Bethel, A. M. Valente, K. Whitehead, D. McElhinney, M. Fogel y A. Yoganathan, «Energetic implications of vessel growth and flow changes over time in Fontan patients», The Annals of Thoracic Surgery, vol. 99, n.º 1, pp. 163–170, 2015.
K. Itatani, K. Miyaji, T. Tomoyasu, Y. Nakahata, K. Ohara, S. Takamoto y M. Ishii, «Optimal conduit size of the extracardiac Fontan operation based on energy loss and flow stagnation», The Annals of Thoracic Surgery, vol. 88, n.º 2, pp. 565–572, 2009.
K. Moyle, G. Mallison, C. Occleshaw, B. Cowan y T. Gentles, «Wall shear stress is the primary mechanism of energy loss in the Fontan connection», Pediatric Cardiology, vol. 27, n.º 3, pp. 309–315, 2006.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Juan A. Rojas, Omar D. López Mejía, Catalina Vargas Acevedo, Miguel A. Ronderos Dumit

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.





