Capa física y algoritmos de planificación de enlace descendente en LTE y WiMAX

Autores/as

  • Ernesto Cadena Muñoz Servicio Nacional de Aprendizaje-SENA
  • Hermes Javier Eslava Blanco Universidad Distrital Francisco José de Caldas
  • Ingrid Patricia Páez Parra Universidad Nacional de Colombia

DOI:

https://doi.org/10.24054/rcta.v2i26.369

Palabras clave:

Fairness, LTE, resource allocation, scheduling algorithm, throughput

Resumen

Este trabajo presenta una revisión de la capa física y los algoritmos de planificación en LTE y WiMAX, como son BestCQI, PF y RR en la asignación de recursos para el enlace descendente o Downlink. Se presentan los principales criterios a tener en cuenta en los planificadores como la fairness y el rendimiento, a partir del análisis de las tramas, subtramas, señalización y sincronización que componen la capa física de LTE y WiMAX. Finalmente se presentan las conclusiones de los tres algoritmos de planificación de recursos y se muestran las debilidades y fortalezas de cada uno.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

GPP TS 36.101. (2009). User Equiment (UE) radio transmission and reception.

GPP TS 36.211. (2009). Evolved Universal Terrestrial Radio Access (E-UTRA): Physical Channels and Modulation.

Agusti, R., Bernardo, F., Casadevall, F., Ferrús, R., Pérez-Romero, J., & Sallent, O. (2010). LTE: nuevas tendencias en comunicaciones móviles. Fundación Vodafone España.

Akan, A., & Edemen, C. (2010). Path to 4G wireless networks (pp. 405–407). doi:10.1109/PIMRCW.2010.5670404.

AlQahtani, S. A., & Alhassany, M. (2013). Comparing different LTE scheduling schemes. In Wireless Communications and Mobile Computing Conference (IWCMC), 2013 9th International (pp. 264–269).

Castellanos, G. D., & Khan, J. Y. (2010a). Performance of WiMAX packet schedulers for multi-class traffic. Communications (LATINCOM), 2010 IEEE Latin-American Conference on, 1–6.

Castellanos, G. D., & Khan, J. Y. (2010b). Performance of WiMAX packet schedulers for multi-class traffic. In 2010 IEEE LatinAmerican Conference on Communications (LATINCOM) (pp. 1–6). doi:10.1109/LATINCOM.2010.5640994.

Chakchai So-In, Jain, R., & Tamimi, A.-K. (2009). Scheduling in IEEE 802.16e mobile WiMAX networks: key issues and a survey. Selected Areas in Communications, IEEE Journal on, 27(2), 156–171.

Cox, C. (2012). An introduction to LTE: LTE, LTEadvanced, SAE and 4G mobile communications. John Wiley & Sons.

Dahlman, E., Parkvall, S., & Skold, J. (2013). 4G: LTE/LTE-advanced for mobile broadband. Academic Press.

Dahlman, E., Parkvall, S., Skold, J., & Beming, P. (2010). 3G evolution: HSPA and LTE for mobile broadband. Academic press.

Dikamba, T. (2011). Downlink Scheduling in 3GPP Long Term Evolution (LTE). Delft University of Technology.

Fang, Y., & McDonald, A. B. (2004). Dynamic codeword routing (DCR): a cross-layer approach for performance enhancement of general multi-hop wireless routing. In Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004. 2004 First Annual IEEE Communications Society Conference on (pp. 255–263).

Furht, B., & Ahson, S. A. (2009). Long Term Evolution: 3GPP LTE radio and cellular technology. Crc Press.

G. Israel. (2013). Gestión de Recursos Radio en Redes Móviles Celulares Basadas en Tecnología OFDMA para la Provisión de QoS y Control de la Interferencia. Universidad de Zaragoza.

García de la Torre, H., & Herradón Berzal, G. (2013). Estudio y desarrollo sobre sistemas de simulación para comunicaciones móviles, LTE.

Guinand Salas, C. E., & others. (2012). Planificación de una red LTE con la herramienta ATOLL y análisis del impacto de las estrategias de Packet Scheduling.

Holma, H., & Toskala, A. (2009). LTE for UMTSOFDMA and SC-FDMA based radio access. John Wiley & Sons.

Ikuno, J. C., Wrulich, M., & Rupp, M. (2010). System Level Simulation of LTE Networks. In Vehicular Technology Conference (VTC 2010- Spring), 2010 IEEE 71st (pp. 1–5). doi:10.1109/VETECS.2010.5494007.

Kong, K.-S., Lee, W., Han, Y.-H., Shin, M.-K., & You, H. (2008). Mobility management for all-IP mobile networks: mobile IPv6 vs. proxy mobile IPv6. Wireless Communications, IEEE, 15(2), 36–45. doi:10.1109/MWC.2008.4492976.

Mannani, D. (2012). Modeling and Simulation of Scheduling Algorithms in LTE Networks. Warsaw University of Technology.

Melodia, T., Vuran, M., & Pompili, D. (2006). The State of the Art in Cross-Layer Design for Wireless Sensor Networks. In M. Cesana & L. Fratta (Eds.), Wireless Systems and Network Architectures in Next Generation Internet (Vol. 3883, pp. 78–92). Springer Berlin Heidelberg. http://dx.doi.org/10.1007/11750673_7.

Motorola. (White Paper). Long Term Evolution (LTE): Overview of LTE Air-Interface.

Nuaymi, L. (2007). WiMAX: technology for broadband wireless access. John Wiley & Sons.

Soliman, H. (2009). Mobile IPv6 support for dual stack hosts and routers.

Somasegaran, L. (2007). Channel estimation and prediction in UMTS LTE. Aalborg University, Institute of Electronic Systems, Signal and Information Processing for Communications.

Taha, A.-E. M., Ali, N. A., & Hassanein, H. S. (2011). LTE, LTE-Advanced and WiMAX: Towards IMT-Advanced Networks. John Wiley & Sons.

Ukil, A. (2009). Cross-layer optimization in QoS aware next generation wireless networks. In Information, Communications and Signal Processing, 2009. ICICS 2009. 7th International Conference on (pp. 1–5). doi:10.1109/ICICS.2009.5397495.

Van Hoesel, L., Nieberg, T., Wu, J., & Havinga, P. J. M. (2004). Prolonging the lifetime of wireless sensor networks by cross-layer interaction. Wireless Communications, IEEE, 11(6), 78–86. doi:10.1109/MWC.2004.1368900.

Vuran, M. C., Gungor, V. C., & Akan, O. B. (2005). On the interdependency of congestion and contention in wireless sensor networks (pp. 136–147).

Descargas

Publicado

2015-07-02 — Actualizado el 2015-07-02

Cómo citar

[1]
E. . Cadena Muñoz, H. J. Eslava Blanco, y I. P. . Páez Parra, «Capa física y algoritmos de planificación de enlace descendente en LTE y WiMAX», RCTA, vol. 2, n.º 26, pp. 28–40, jul. 2015.

Artículos más leídos del mismo autor/a