Visual Classification Algorithm for Chonto Tomatoes According to Standard NTC-1103-1 (Color, Size and Shape Parameters)

Authors

DOI:

https://doi.org/10.24054/rcta.v1i45.2894

Keywords:

automation, computer vision, tomatoes classification

Abstract

This article introduces the development and implementation a low-cost system for the classification of Chonto tomatoes according to their color, shape and size, in accordance with the Colombian technical standard NTC 1103-1. To achieve the proposed objective, a classification algorithm is developed using Python and OpenCV software. The obtained results show that the classification for color and maturity had an accuracy of 93%. In the classification by size the precision was 98%. Regarding the evaluation of eccentricity for determining the shape, an accuracy of 80% was obtained. The precision values mentioned above are comparisons with the results obtained manually by a trained individual, which are considered the ideal classification. However, the response time of the algorithm is 0.48 sec, in average, which is much less than the time required for human inspection and classification. In addition to precision achieved, it can be said that the developed software responds to the need to detect and classify chonto tomatoes according to their color, size and shape established in the Colombian technical standard NTC 1103- 1.

Downloads

Download data is not yet available.

References

J M. Moreno Hernández, I. Benítez García, J C. Ramírez Suarez, y E. Sánchez, “Strategies for production, characterization and application of protein-based biostimulants in agriculture: A review”, Chil. J. Agric. Res., vol. 80, no. 2, pp. 274-289, 2020. DOI: http://dx.doi.org/10.4067/S0718-58392020000200274. DOI: https://doi.org/10.4067/S0718-58392020000200274

FAO., Informe del Foro Regional de Agroindustrias en América Latina, Roma, Verónica Russo, 2011.

Gert-Jan, S., et al., Investigación Agropecuaria en Latinoamérica y el Caribe: Un análisis de las Instituciones, la Inversión y las Capacidades entre Países. Región Americas: Inter-American Development Bank, 2016.

Hamdiyah Alhassan, “The effect of agricultural total factor productivity on environmental degradation in sub-Saharan Africa”, Scientific African, vol. 12, 2021. DOI: https://doi.org/10.1016/j.sciaf.2021.e00740. DOI: https://doi.org/10.1016/j.sciaf.2021.e00740

David Ireri, Eisa Belal, Cedric Okinda, Nelson Makange, Changying Ji, “A computer vision system for defect discrimination and grading in tomatoes using machine learning and image processing”, Artificial Intelligence in Agriculture, vol. 2, pp. 28-37, 2019. DOI: https://doi.org/10.1016/j.aiia.2019.06.001. DOI: https://doi.org/10.1016/j.aiia.2019.06.001

O. Arjenaki , P. Moghaddam and A. Motlagh , "Online tomato sorting based on shape, maturity, size, and surface defects using machine vision", Turkish Journal of Agriculture and Forestry, vol. 37, no. 1, pp. 62-68, article 7, 2013. DOI: https://doi.org/10.3906/tar-1201-10.

A. Maertens, C.B. Barrett, “Measuring Social Networks' Effects on Agricultural Technology Adoption”, American Journal of Agricultural Economics, vol. 95, no.2, pp. 353-359, 2013. DOI: https://doi.org/10.1093/ajae/aas049. DOI: https://doi.org/10.1093/ajae/aas049

J. Rodríguez C., A. Pérez G., L. Ortega Ga., y M. Arteaga B., “Estudio hidrosostenible en el cultivo del tomate, su efecto en el rendimiento y calidad del fruto”. Cultivos Tropicales, vol. 41, no.2, e06, 2020. [En línea] Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0258-59362020000200006&lng=es&nrm=iso

Análisis de resultados EVA evaluaciones agropecuarias municipales 2021, Miniagricultura, pp 8. [En línea] Disponible en: https://upra.gov.co/es-co/Evas_Documentos/20220511_Resultados_EVA_2021.pdf#search=tomate

J. A. Salazar Peña, “Implementación de un cultivo de Tomate (Solanum lycopersicum) como nueva alternativa de diversificación agrícola, en el municipio de Chaparral, Tolima”, informe final de grado, Departamento Ingeniería Agronómica, Universidad de la Salle, Yopal, Casanare, 2019.

J. A. Gutiérrez, F. D. Ávila, L. M. León, M. I. Pinzón, y A. Londoño, “Residualidad de fitosanitarios en tomate y uchuva cultivados en Quindío (Colombia)”. Ciencia & Tecnología Agropecuaria, vol. 18, no.3, pp. 571-582. 2017. DOI: https://doi.org/10.21930/rcta.vol18_num3_art:745. DOI: https://doi.org/10.21930/rcta.vol18_num3_art:745

L. Andrade Daza, “Cultivo de tomate (solanum lycopersicum l.) y maíz (zea mays) como alternativa de sostenimiento para familias campesinas en Algeciras, Huila”, Informe final de grado, Departamento Ingeniería Agronómica, Universidad de la Salle, Yopal, Casanare, 2019.

Nashwa El-Bendary, Esraa El Hariri, Aboul Ella Hassanien, Amr Badr, “Using machine learning techniques for evaluating tomato ripeness”, Expert Systems with Applications, vol. 42, no. 4, pp. 1892-1905, 2015. DOI: https://doi.org/10.1016/j.eswa.2014.09.057. DOI: https://doi.org/10.1016/j.eswa.2014.09.057

Liu L, Li Z, Lan Y, Shi Y, Cui Y “Design of a tomato classifier based on machine vision” PLoS ONE, vol. 14, no.7, 2019. DOI: https://doi.org/10.1371/journal.pone.0219803. DOI: https://doi.org/10.1371/journal.pone.0219803

Megha.P. Arakeri, Lakshmana, “Computer Vision Based Fruit Grading System for Quality Evaluation of Tomato in Agriculture industry”, Procedia Computer Science, vol. 79, p. 426-433, ISSN 1877-0509, 2016. DOI: https://doi.org/10.1016/j.procs.2016.03.055. DOI: https://doi.org/10.1016/j.procs.2016.03.055

A. Patiño, F. Salazar, H. Ramírez, J. Velandia. “Implementación de un sistema de control redundante basado en una arquitectura de Internet de las Cosas (IoT)”. Información tecnológica, vol. 33, no. 2, pp. 181-192, 2022. DOI: https://dx.doi.org/10.4067/S0718-07642022000200181. DOI: https://doi.org/10.4067/S0718-07642022000200181

V G, Narendra, y S. Hareesha. “Quality Inspection and Grading of Agricultural and Food Products by Computer Vision- A Review”. International Journal of Computer Applications. vol.2, no.1, pp 43-65, 2010. DOI: https://doi.org/10.5120/612-863. DOI: https://doi.org/10.5120/612-863

V. Pavithra, R. Pounroja, y B. S. Bama, "Machine vision based automatic sorting of cherry tomatoes," 2015 2nd International Conference on Electronics and Communication Systems (ICECS), pp. 271-275, 2015. DOI: https://doi.org/10.1109/ECS.2015.7124907. DOI: https://doi.org/10.1109/ECS.2015.7124907

M. J. Villaseñor, J. E. Botello, F. J. Pérez, M. Cano, M. F. León, M. G. Bravo, and A. I. Barranco, “Fuzzy Classification of the Maturity of the Tomato Using a Vision System”, Journal of Sensors, vol. 9, no. 4, pp. 12, 2019. DOI: https://doi.org/10.1155/2019/3175848. DOI: https://doi.org/10.1155/2019/3175848

V P. Supriya, M J. Vaishnavi, K D. Komal, y B.P.Kulkarni, “Fruit Quality Detection using OpenCV/Pyhon”, International Research Journal of Engineering and Technology (IRJET), vol. 7, no.5, 2020. [en linea] Disponible en: https://www.irjet.net/archives/V7/i5/IRJET-V7I51254.pdf

S. Dhakshina Kumar, S. Esakkirajan, S. Bama, y B. Keerthi veena, “A microcontroller based machine vision approach for tomato grading and sorting using SVM classifier”, Microprocessors and Microsystems, vol. 76, 2020. DOI: https://doi.org/10.1016/j.micpro.2020.103090. DOI: https://doi.org/10.1016/j.micpro.2020.103090

Industrias alimentarias. Tomate de Mesa, Norma Técnica Colombiana NTC 1103-1, 2001. [En línea]. Disponible en: https://tienda.icontec.org/gp-industrias-alimentarias-tomates-de-mesa-ntc1103-1-1995.html

Z. Zhang, "A flexible new technique for camera calibration", in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp. 1330-1334, 2000, DOI: https://doi.org/10.1109/34.888718. DOI: https://doi.org/10.1109/34.888718

Chernov, V., Alander, J., & Bochko, V. “Integer-based accurate conversion between RGB and HSV color spaces”. Computers & Electrical Engineering, vol. 46, pp. 328–337. 2015. DOI: https://doi.org/10.1016/j.compeleceng.2015.08.005. DOI: https://doi.org/10.1016/j.compeleceng.2015.08.005

Shavetov, S. V., Merkulova, I. I., Ekimenko, A. A., Borisov, O. I., & Gromov, V. S. “Computer Vision in Control and Robotics for Educational Purposes”. IFAC-PapersOnLine, vol. 52, no. 9, pp.127–132. 2019. DOI: https://doi.org/10.1016/j.ifacol.2019.08.136. DOI: https://doi.org/10.1016/j.ifacol.2019.08.136

J. E. Jaramillo, et al. Tecnología para el cultivo de tomate bajo condiciones protegidas. Capítulo 9, pp 437, [online]. Disponible en: http://hdl.handle.net/20.500.12324/13320

C. Gupta, V.K. Tewari, R. Machavaram, P. Shrivastava, “An image processing approach for measurement of chili plant height and width under field conditions”, Journal of the Saudi Society of Agricultural Sciences, vol. 21, no.3, pp. 171-179, 2022, DOI: https://doi.org/10.1016/j.jssas.2021.07.007. DOI: https://doi.org/10.1016/j.jssas.2021.07.007

Omidi-Arjenaki, Omid & Moghaddam, Parviz & Motlagh, Asaad, " Online tomato sorting based on shape, maturity, size, and surface defects using machine vision", Turkish Journal of Agriculture and Forestry, vol. 37, no. 1, pp. 62-68, 2013, DOI: https://doi.org/10.3906/tar-1201-10. DOI: https://doi.org/10.3906/tar-1201-10

Gonzalez, Rafael C, and Richard E. Woods, "Digital Image Processing," Cuarta edición, New York, NY: Pearson, [2018]

Published

2025-01-01

How to Cite

[1]
E. A. Correa Cantillo, L. F. Sotelo Jiménez, E. Yime Rodríguez, and J. A. Roldán Mckinley, “Visual Classification Algorithm for Chonto Tomatoes According to Standard NTC-1103-1 (Color, Size and Shape Parameters)”, RCTA, vol. 1, no. 45, pp. 146–158, Jan. 2025.

Most read articles by the same author(s)