Esta es un versión antigua publicada el 2013-01-02. Consulte la versión más reciente.

Implementación de técnicas de reconocimiento de patrones (Least Square Support Vector Machines) en procesos de selección de parámetros característicos aplicados a sistemas metabolómicos

Autores/as

  • William Villamizar Rozo Universidad de Pamplona
  • Luis E. Mendoza Universidad de Pamplona
  • Pablo Santafé G. Universidad de Pamplona

DOI:

https://doi.org/10.24054/rcta.v1i21.1897

Palabras clave:

Metabolómica, HNMR, LS-SVM, COW

Resumen

En este artículo se presenta una metodologíaque involucra, técnicas de análisis multivariable y una etapa de pre-procesamiento con el fin de determinar metabolitos característicos en un determinado espectro. Este método novedoso permitió determinar que ciertos metabolitos son modificados por las diferentes concentraciones y además de conocer la funcionalidad de LS-SVM en datos NMR. También se logró validar procesos como: alineamiento de picos, normalización, corrección de línea base y análisis multienergía, en datos metabolómicos en aceites de oliva y avellana puros y mezclados con alteraciones de 2%, 5%, 10%, 20% y 30%.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Darwin, C. (1859). On the Origin of Species by Means of Natural Selection. Canadian Naturalist and Geologist, 5, 100-120.

Vapnik, V. (1998b). The Support Vector Method of Function Estimation. In J. A. K. Suykens, & J. Vandewalle (Eds.), Nonlinear Modeling: Advanced Black-box Techniques. Boston: Kluwer Academic Publishers.

Fiehn, O., Kopka, J., Trethewey, R. N., et al. (2000). Identification of Uncommon Plant Metabolites Based on Calculation of Elemental Compositions Using Gas Chromatography and Quadrupole Mass Spectrometry. Analytical Chemistry, 72, 3573–3580.

Viant, M. R., Rosenblum, E. S., Tieerdema, R. S. (2003). NMR-based Metabolomics: A Powerful Approach for Characterizing the Effects of Environmental Stressors on Organism Health. Environmental Science & Technology, 37, 4982–4989.

Gilbert, R. J., Johnson, H. E., Winson, M. K., et al. (Genetic Programming as an Analytical Tool for Metabolome Data). Institute of Biological Sciences, University of Wales, Aberystwyth, Ceredigion.

Lowe, D., & Hall, W. (1999). Hypermedia & the Web: An Engineering Approach. John Wiley & Sons.

Oliver, S. G., Winson, M. K., Kell, D. B., et al. (1998). Systematic Functional Analysis of the Yeast Genome. Trends in Biotechnology, 16, 373–378.

Shulaev, V. (2006). Metabolomics Technology and Bioinformatics. Briefings in Bioinformatics, 7(2), 128–139.

Niels-Peter Vest Nielsen, Jens Michael Carstensen, Jørn Smedsgaard. (1998). Aligning of Single and Multiple Wavelength Chromatographic Profiles for Chemometric Data Analysis Using Correlation Optimized Warping. Journal of Chromatography A, 805, 17–35.

Vigli, G., Philippidis, A., Spyros, A., Dais, P. (2003). Classification of Edible Oils by Employing 31P and 1H NMR Spectroscopy in Combination with Multivariate Statistical Analysis. A Proposal for the Detection of Seed Oil Adulteration in Virgin Olive Oils. Journal of Agricultural and Food Chemistry, 51, 5715-5722.

Raamsdonk, L. M., Teusink, B., Broadhurst, D., et al. (2001). A Functional Genomics Strategy that Uses Metabolome Data to Reveal the Phenotype of Silent Mutations. Nature Biotechnology, 19, 45–50.

Catchpole, G. S., Beckmann, M., Enot, D. P., et al. (2005). Hierarchical Metabolomics Demonstrates Substantial Compositional Similarity between Genetically Modified and Conventional Potato Crops. Proceedings of the National Academy of Sciences, 102, 14458–14462.

Nicholson, J. K., Lindon, J. C., Holmes, E. (1999). ‘Metabonomics’ Understanding the Metabolic Responses of Living Systems to Pathophysiological Stimuli via Multivariate Statistical Analysis of Biological NMR Spectroscopic Data. Xenobiotica, 29, 1181–1189.

Watkins, S. M., German, J. B. (2002). Metabolomics and Biochemical Profiling in Drug Discovery and Development. Current Opinion in Molecular Therapeutics, 4, 224–228.

Watkins, S. M., Reifsnyder, P. R., Pan, H. J., et al. (2002). Lipid Metabolome-Wide Effects of the PPARgamma Agonist Rosiglitazone. Journal of Lipid Research, 43, 1809–1817.

Spratlin, J. L., Serkova, N. J., & Eckhardt, S. G. (2009). Clinical Applications of Metabolomics in Oncology: A Review. Clinical Cancer Research, 15, 431-440.

Mannina, L., Segre, A. (2002). High Resolution Nuclear Magnetic Resonance: From Chemical Structure to Food Authenticity. Grasas y Aceites, 53(1), 22-33.

Gilbert, R. J., Johnson, H. E., Winson, M. K., et al. (Genetic Programming as an Analytical Tool for Metabolome Data). Institute of Biological Sciences, University of Wales, Aberystwyth, Ceredigion.

Upchurch, R. L., Sims-Knight, J. E. (1998). In Support of Student Process Improvement. In Proceedings of the 11th Conference on Software Engineering Education and Training. Atlanta: IEEE Computer Society Press.

Warboys, B., Kawalek, P., Robertson, I., & Greenwood, M. (1999). Business Information Systems: A Process Approach. London: McGraw-Hill.

Descargas

Publicado

2022-11-08 — Actualizado el 2013-01-02

Versiones

Cómo citar

Villamizar Rozo, W., Mendoza, L. E., & Santafé G., P. (2013). Implementación de técnicas de reconocimiento de patrones (Least Square Support Vector Machines) en procesos de selección de parámetros característicos aplicados a sistemas metabolómicos. REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA), 1(21), 104–112. https://doi.org/10.24054/rcta.v1i21.1897 (Original work published 8 de noviembre de 2022)

Número

Sección

Artículos

Artículos más leídos del mismo autor/a