IMPLEMENTACIÓN DE TÉCNICAS DE RECONOCIMIENTO DE PATRONES (LEAST SQUARE SUPPORT VECTOR MACHINES) EN PROCESOS DE SELECCIÓN DE PARÁMETROS CARACTERÍSTICOS APLICADOS A SISTEMAS METABOLÓMICOS
DOI:
https://doi.org/10.24054/rcta.v1i21.1897Palabras clave:
Metabolómica, HNMR, LS-SVM, COWResumen
En este artículo se presenta una metodologíaque involucra, técnicas de análisis multivariable y una etapa de pre-procesamiento con el fin de determinar metabolitos característicos en un determinado espectro. Este método novedoso permitió determinar
que ciertos metabolitos son modificados por las diferentes concentraciones y además de conocer la funcionalidad de LS-SVM en datos NMR. También se logró validar procesos como: alineamiento de picos, normalización, corrección de línea base y análisis
multienergía, en datos metabolómicos en aceites de oliva y avellana puros y mezclados con alteraciones de 2%, 5%, 10%, 20% y 30%.
Descargas
Citas
Oliver S.G, Winson MK, Kell D.B, et al.
Systematic functional analysis of the yeast
genome.TrendsBiotechnol 1998; 16:373–8.
. Vladimir Shulaev, Metabolomics technology
and bioinformatics. Briefings in
Bioinformatics.2006; Vol. 7. No 2. 128 -139.
. Viant MR, Rosenblum E.S, Tieerdema RS.
NMR-based metabolomics: a powerful
approach for characterizing theeffects of
environmental stressors on organism health.
Environ SciTechnol 2003; 37:4982–9.
. Hong-Seok Son, Ki Myong Kim, Frans Van
Den Berg,Geum-Sook Hwang, Won-Mok
Park, Cherl-Ho Lee, and Young-
ShickHong,J. 1H Nuclear Magnetic
Resonance-Based Metabolomic
Characterization of Wines by Grape
Varieties and Production Areas.Agric. Food
Chem. 2008, 56, 8007–8016
. D. F. Brougham, G. Ivanova, M. Gottschalk,
D.M. Collins, A. J. Eustace, R. O’Connor,
and J. Havel,Artificial Neural Networks for
Classification in Metabolomic Studies
ofWhole Cells Using 1H NuclearMagnetic
Resonance.
. Richard J. Gilbert, Helen E. Johnson, Michæl
K. Winson, Jem J.
Rowland,RoystonGoodacre, Aileen R.
Smith, Michæl A. Hall and Douglas B. Kell.
Genetic Programming as an Analytical Tool
for MetabolomeData;Institute of Biological
Sciences, University of Wales, Aberystwyth,
Ceredigion.
. Z. Ramadan, D. Jacobs, M. Grigorov, S.
Kochhar. Metabolic profiling using principal
component analysis, discriminant partial
least squares, and genetic algorithms.
Elsevier, Talanta 68 (2006) 1683–1691
. Darwin on the origin of species by means of
natural selection. Canadian Naturalist and
Geologist 5:100-120.
. Vapnik, V. (1998b).The support vector
method of function estimation. In J. A. K.
Suykens, & J. Vandewalle, (Eds.), Nonlinear
Modeling: Advanced Black-box Techniques.
Boston: Kluwer Academic Publishers.
. Jan Luts, Fabian Ojeda, Raf Van de
Plasa,Bart De Moora, Sabine Van Huffela,
Johan A.K. Suykensa , A tutorial on support
vector machine-based methods for
classification problems in chemometrics.
Elsevier AnalyticaChimicaActa 665 (2010)
–145
. Raamsdonk LM, Teusink B, Broadhurst D,
et al. A functional genomics strategy that
uses metabolome data to reveal the
phenotype of silent mutations. Nat
Biotechnol 2001;19:45–50.
. Catchpole GS, Beckmann M, Enot DP, et al.
Hierarchical metabolomics demonstrates
substantial compositional similarity between
genetically modified and conventional potato
crops. PNAS 2005;102:14458–62.
. Nicholson JK, Lindon JC, Holmes E.
‘Metabonomics’ understanding the metabolic
responses of living systems
topathophysiological stimuli via multivariate
statistical analysisof biological NMR
spectroscopic data. Xenobiotica 1999;
:1181–9.
. Watkins SM, German J. B. Metabolomics
and biochemical profiling in drug discovery
and development.CurrOpinMolTher
;4:224–8.
. Watkins SM, Reifsnyder PR, Pan HJ, et al.
Lipid metabolome-wide effects of the
PPARgammaagonistrosiglitazone. J Lipid
Res 2002;43:1809–17.
. [16]Jennifer L. Spratlin,NatalieJ. Serkova,
and S. Gail Eckhardt, Clinical Applications
ofMetabolomics in Oncology:
AReview.ClinCancerRes2009;15:431-440.
. Fiehn O, Kopka J, Trethewey RN, et al.
Identification of uncommon plant
metabolites based on calculation ofelemental
compositions using gas chromatography
andquadrupole mass spectrometry. Anal
Chem 2000; 72: 3573–80.
. Georgia Vigli, AngelosPhilippidis,
Apostolos Spyros, and PhotisDais,
Classification of Edible Oils by Employing
P and 1H NMR Spectroscopy in
Combination with Multivariate Statistical
Analysis. A Proposal for the Detection of
Seed Oil Adulteration in Virgin Olive Oils,J.
Agric. Food Chem. 2003, 51, 5715-5722
. Mannina Luisa, Segre Annalaura,High
Resolution Nuclear Magnetic Resonance:
From Chemical Structure to Food
Authenticity,Grasas y Aceites, Vol. 53. Fasc.
(2002), 22-33.
. Niels-Peter Vest Nielsen, Jens Michael
Carstensen, JørnSmedsgaard ,*Aligning of
single and multiple wavelength
chromatographic profiles for chemometric
data analysis using correlation optimized
warping. Journal of Chromatography A, 805
(1998) 17–35.
Descargas
Publicado
Versiones
- 2013-01-02 (5)
- 2013-01-02 (4)
- 2013-01-02 (3)
- 2013-01-02 (2)
- 2022-11-08 (1)
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA)
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.