Sintesis de polvo de Titanio por reducción metalotermica

Authors

  • Bernd Friedrich Institute of Process Metallurgy and Metal Recycling (IME)
  • Rafael Bolivar León Universidad de Pamplona

DOI:

https://doi.org/10.24054/bistua.v17i1.287

Keywords:

Producción de titanio, Metallothermy, Titanium dioxide

Abstract

Se obtuvo polvo metálico de titanio (2,98% en peso O) de tamaños de partículas irregulares y semiesféricas entre 0,5 y 3,5 um mediante reducción magnesiotérmica de TiO2y un proceso de purificación por lixiviación. Se evaluó la influencia de la temperatura, tiempo, tamaño de partícula de TiO2, forma de magnesio, relación molar de Mg / TiO2. Se diseñaron y usaron tres reactores diferentes que debieron soportar alta temperatura y promover las reacciones sólido-líquido y sólido-gas. La mejor configuración resultó cuando se promovió la reacción del modelo de gas sólido.

Downloads

Download data is not yet available.

References

Bolívar, R., & Friedrich, B. (2009). Synthesis of titanium via magnesiothermic reduction of TiO2 (Pigment). Proceedings - European Metallurgical Conference, EMC 2009 (Vol. 4).

https://doi.org/10.13140/RG.2.2.11374.6176 0

Bolzoni, L., Ruiz-Navas, E. M., Neubauer, E., & Gordo, E. (2012). Inductive hot-pressing of titanium and titanium alloy powders. Materials Chemistry and Physics, 131(3), 672–679.

https://doi.org/https://doi.org/10.1016/j.matc hemphys.2011.10.034

Borys, S; Anderson, R. P.; Benish, A.; Jacobsen, L.; Ernst, W.; Kogut, D.; Lyssenko, T. (2005). Development Status of the Armstrong Process for Production of Low Cost Titanium Powder. In Aeromat 2005. Orlando.

C. Oosterhof, Reitz. J, Bolivar. R, B. F. (2010). Potentiale alternativer Herstellungskonzepte für Titanmetall und Titanlegierungen. In 44. Metallurgische Seminar des Fachausschusses für Metallurgische (pp. 131–162).

Capus, J. (2017). Titanium powder developments for AM – A round-up. Metal Powder Report, 72(6), 384–388.

https://doi.org/https://doi.org/10.1016/j.mprp. 2017.11.001

Cui, C., Hu, B., Zhao, L., & Liu, S. (2011). Titanium alloy production technology, market prospects and industry development. Materials & Design - MATER DESIGN (Vol. 32).

https://doi.org/10.1016/j.matdes.2010.09.011 Dutta, B., & Froes, F. (2015). The Additive Manufacturing (AM) of Titanium Alloys.

Advanced Materials Research (Vol. 1019). https://doi.org/10.1016/B978-0-12-800054- 0.00024-1

Fray, D. J. (2001). Emerging molten salt technologies for metals production. JOM, 53(10), 27–31.

https://doi.org/10.1007/s11837-001-0052-5 Froes, F. H. S. (2012). Titanium Powder

Metallurgy: A Review – Part 1. ADVANCED MATERIALS & PROCESSES, 16–22.

Retrieved from https://www.asminternational.org/documents

/10192/1877324/amp17009p16.pdf/2df24a9d

-754d-4801-8aa1-3759cf4e6b64

German, R. (2009). Titanium powder injection moulding: A review of the current status of materials, processing, properties and applications. Powder Injection Moulding

International (Vol. 3).

Gopienko, V. G., & Neikov, O. D. (2009). Chapter 14 - Production of Titanium and Titanium Alloy Powders. In Handbook of Non-Ferrous Metal Powders: Technologies and Applications (pp. 314–323). Oxford: Elsevier. https://doi.org/https://doi.org/10.1016/B978- 1-85617-422-0.00014-8

Hongan, L.; McGinn, E.; Kendall, R. (2008). Research and development in titanium implications for a titanium metal industry in Australia.

Hurless, B. E., & Froes, F. H. (2002). Lowering the cost of titanium. The AMPTIAC Quarterly (Vol. 6).

Mohandas, K. S., & Fray, D. (2004). FFC Cambridge process and removal of oxygen from metal-oxygen systems by molten salt electrolysis: An overview. Transactions of the Indian Institute of Metals (Vol. 57).

Norgate, T. E., & Wellwood, G. (2006). The potential applications for titanium metal powder and their life cycle impacts. JOM, 58(9), 58–63. https://doi.org/10.1007/s11837-

-0084-y

Okabe, T. H., Oda, T., & Mitsuda, Y. (2004). Titanium powder production by preform reduction process (PRP). Journal of Alloys and Compounds, 364(1), 156–163. https://doi.org/https://doi.org/10.1016/S0925- 8388(03)00610-8

Prasad, S., Ehrensberger, M., Gibson, M. P., Kim, H., & Monaco, E. A. (2015, November 1). Biomaterial properties of titanium in dentistry. Journal of Oral Biosciences. Elsevier. https://doi.org/10.1016/j.job.2015.08.001

Rueda J, Hernández A. (2015). Growth of single-cristalline strontium titanate fibers using LHPG. BISTUA Revista de la Facultad de Ciencias Básicas 13: 24-28. https://doi.org/10.24054/01204211.v2.n2.2015.1796

Suzuki, R. O., & Inoue, S. (2003). Calciothermic reduction of titanium oxide in molten CaCl2. Metallurgical and Materials Transactions B, 34(3), 277–285.

https://doi.org/10.1007/s11663-003-0073-2 Suzuki, R. O., Ono, K., & Teranuma, K. (2003). Calciothermic reduction of titanium oxide and in-situ electrolysis in molten CaCl2. Metallurgical and Materials Transactions B, 34(3), 287–295.

https://doi.org/10.1007/s11663-003-0074-1 Vlad, A. I. O. (2008). Innovative powder metallurgy

process for producing low cost titanium alloy component. In Titanium 2008. Las Vegas.

Whittaker, D., & Froes, F. H. (Sam). (2015). 30 - Future prospects for titanium powder metallurgy markets BT - Titanium Powder Metallurgy. In Titanium Powder Metallurgy (pp. 579–600). Boston: Butterworth- Heinemann. https://doi.org/https://doi.org/10.1016/B978- 0-12-800054-0.00030-7

Workshop, M. I. M. T., & Pm, E. (2007).

Developments in the powder injection moulding of titanium. Powder Metallurgy.

Yang, Y., Zhang, C., Dai, Y., & Luo, J. (2017). Tribological properties of titanium alloys under lubrication of SEE oil and aqueous solutions. Tribology International, 109, 40–

https://doi.org/10.1016/j.triboint.2016.11.040

Published

2019-06-13

How to Cite

Friedrich, B. ., & Bolivar León, R. . (2019). Sintesis de polvo de Titanio por reducción metalotermica. BISTUA REVISTA DE LA FACULTAD DE CIENCIAS BASICAS, 17(1), 205–218. https://doi.org/10.24054/bistua.v17i1.287

Issue

Section

Paper