Proposal of a method for asbestos detection in hyperspectral images based on spectral differential similarity

Authors

DOI:

https://doi.org/10.24054/rcta.v1i45.3279

Keywords:

Asbestos, correlation, hyperspectral imaging, spectral signature, remote sensing

Abstract

Considering that one of the challenges of hyperspectral imaging is identifying methods that enable the effective and efficient detection of materials, this article proposes a new method for detecting asbestos in hyperspectral images based on spectral differential similarity. This method determines how closely the spectral signature of a given pixel matches the spectral signature of asbestos. The proposed method was implemented using open-source libraries such as spectral, numpy, pandas, and matplotlib. Compared to the correlation method, it detected 0.813% fewer vegetation pixels. In terms of computational efficiency, the proposed method was 4.27 times faster than the correlation method. The results indicate that the proposed method demonstrates adequate efficacy and excellent efficiency, making it a strong candidate for integration into tools for processing and analyzing hyperspectral images in academic and industrial domains.

Downloads

Download data is not yet available.

References

X. Zhang, “Hyperspectral image classification based on convolutional neural network,” Appl. Comput. Eng., vol. 42, no. 1, pp. 239–242, Feb. 2024, doi: 10.54254/2755-2721/42/20230783.

Érica S. Pinto, Gustavo Pessin, and Alan K. Rego Segundo, “Análise de Imagens Hiperespectrais para reconhecimento de depósitos de minério de ferro utilizando aprendizado nao supervisionado,” Oct. 2022. doi: 10.20906/CBA2022/3462.

A. Alanazi, N. H. A. Wahab, and B. A. S. Al-Rimy, “Hyperspectral Imaging for Remote Sensing and Agriculture: A Comparative Study of Transformer-based Models,” in 2024 IEEE 14th Symposium on Computer Applications & Industrial Electronics (ISCAIE), May 2024, pp. 129–136. doi: 10.1109/ISCAIE61308.2024.10576233.

Y. E. García-Vera, A. Poloche-Arango, C. A. Mendivelso-Fajardo, and F. J. Gutiérrez-Bernal, “Hyperspectral Image Analysis and Machine Learning Techniques for Crop Disease Detection and Identification: A Review,” Sustainability, vol. 16, no. 14, p. 6064, Jul. 2024, doi: 10.3390/su16146064.

C. Vairavan, B. M. Kamble, A. G. Durgude, S. R. Ingle, and K. Pugazenthi, “Hyperspectral Imaging of Soil and Crop: A Review,” J. Exp. Agric. Int., vol. 46, no. 1, pp. 48–61, Jan. 2024, doi: 10.9734/jeai/2024/v46i12290.

C. Harsha Vardhan, R. S. Vaddi, J. Kadavakollu, and K. Kalpana, “Classification of Hyperspectral Remote Sensing Images Using Deep Learning,” 2024, pp. 349–358. doi: 10.1007/978-981-99-6547-2_27.

S. Qian, “Overview of Hyperspectral Imaging Remote Sensing from Satellites,” in Advances in Hyperspectral Image Processing Techniques, Wiley, 2022, pp. 41–66. doi: 10.1002/9781119687788.ch2.

M. Akewar and M. Chandak, “Hyperspectral Imaging Algorithms and Applications: A Review.” Jan. 02, 2024. doi: 10.36227/techrxiv.24743562.v2.

R. J. Murphy, M. J. Van Kranendonk, S. J. Kelloway, and I. E. Wainwright, “Complex patterns in fossilized stromatolites revealed by hyperspectral imaging (400–2496 nm),” Geobiology, vol. 14, no. 5, pp. 419–439, Sep. 2016, doi: 10.1111/gbi.12184.

N. Zaini, F. Van der Meer, and H. Van der Werff, “Determination of Carbonate Rock Chemistry Using Laboratory-Based Hyperspectral Imagery,” Remote Sens., vol. 6, no. 5, pp. 4149–4172, May 2014, doi: 10.3390/rs6054149.

D. Manolakis, E. Truslow, M. Pieper, T. Cooley, and M. Brueggeman, “Detection Algorithms in Hyperspectral Imaging Systems: An Overview of Practical Algorithms,” IEEE Signal Process. Mag., vol. 31, no. 1, pp. 24–33, Jan. 2014, doi: 10.1109/MSP.2013.2278915.

M. Shimoni, R. Haelterman, and C. Perneel, “Hypersectral Imaging for Military and Security Applications: Combining Myriad Processing and Sensing Techniques,” IEEE Geosci. Remote Sens. Mag., vol. 7, no. 2, pp. 101–117, Jun. 2019, doi: 10.1109/MGRS.2019.2902525.

X. Briottet et al., “Military applications of hyperspectral imagery,” in Defense and Security Symposium, May 2006, p. 62390B. doi: 10.1117/12.672030.

E. Viero, D. Gubiani, M. Basso, M. Marin, and G. Sgrazzutti, “Identification of asbestos roofing from hyperspectral images.” Mar. 09, 2024. doi: 10.5194/egusphere-egu24-15565.

G. Bonifazi, G. Capobianco, S. Serranti, S. Malinconico, and F. Paglietti, “ASBESTOS DETECTION IN CONSTRUCTION AND DEMOLITION WASTE ADOPTING DIFFERENT CLASSIFICATION APPROACHES BASED ON SHORT WAVE INFRARED HYPERSPECTRAL IMAGING,” Detritus, no. 20, pp. 90–99, Aug. 2022, doi: 10.31025/2611-4135/2022.15211.

G. Bonifazi et al., “Asbestos detection in construction and demolition waste by different classification methods applied to short-wave infrared hyperspectral images,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 307, p. 123672, Feb. 2024, doi: 10.1016/j.saa.2023.123672.

D. Enrique Valdelamar Martínez, M. Saba, and L. K. Torres Gil, “Assessment of asbestos-cement roof distribution and prioritized intervention approaches through hyperspectral imaging,” Heliyon, vol. 10, no. 3, p. e25612, Feb. 2024, doi: 10.1016/j.heliyon.2024.e25612.

D. D. Langer, T. A. Johansen, and A. J. Sorensen, “Interactive Hyperspectral Data Inspection During Field Operations,” in 2022 12th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Sep. 2022, pp. 1–5. doi: 10.1109/WHISPERS56178.2022.9955108.

V. K. Munipalle, U. Rani Nelakuditi, and R. R. Nidamanuri, “Impact of Dimensionality Reduction Techniques on Classification of Hyperspectral Images,” in 2023 3rd International Conference on Intelligent Technologies (CONIT), Jun. 2023, pp. 1–6. doi: 10.1109/CONIT59222.2023.10205828.

J. M. Haut, J. M. Franco-Valiente, M. E. Paoletti, S. Moreno-Álvarez, and A. Pardo-Diaz, “Hyperspectral Image Analysis Using Cloud-Based Support Vector Machines,” SN Comput. Sci., vol. 5, no. 6, p. 719, Jul. 2024, doi: 10.1007/s42979-024-03073-z.

S. Li, W. Song, L. Fang, Y. Chen, P. Ghamisi, and J. A. Benediktsson, “Deep Learning for Hyperspectral Image Classification: An Overview,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 9, pp. 6690–6709, Sep. 2019, doi: 10.1109/TGRS.2019.2907932.

A. Plaza et al., “Recent advances in techniques for hyperspectral image processing,” Remote Sens. Environ., vol. 113, pp. S110–S122, Sep. 2009, doi: 10.1016/j.rse.2007.07.028.

K. Saheb Ettabaa and M. Ben Salem, “Adaptive Progressive Band Selection for Dimensionality Reduction in Hyperspectral Images,” J. Indian Soc. Remote Sens., vol. 46, no. 2, pp. 157–167, Feb. 2018, doi: 10.1007/s12524-017-0691-9.

A. Elmaizi, H. Nhaila, E. Sarhrouni, A. Hammouch, and C. Nacir, “A novel information gain based approach for classification and dimensionality reduction of hyperspectral images,” Procedia Comput. Sci., vol. 148, pp. 126–134, 2019, doi: 10.1016/j.procs.2019.01.016.

G. E. Chanchí Golondrino, M. A. Ospina Alarcón, and M. Saba, “Vegetation Identification in Hyperspectral Images Using Distance/Correlation Metrics,” Atmosphere (Basel)., vol. 14, no. 7, p. 1148, Jul. 2023, doi: 10.3390/atmos14071148.

Z. Chao, F. Xianchuang, W. Tong, Z. Yuanzhi, and C. Shengbo, “Detection of Ore Forming Elements Migrated From Rock and Soil to Vegetation Leaves Using Hyperspectral Data,” Radio Sci., vol. 58, no. 8, Aug. 2023, doi: 10.1029/2022RS007580.

N. OWADA, M. TOBITA, B. SINAICE, H. TORIYA, S. UTSUKI, and Y. KAWAMURA, “Development of Asbestos Containing Serpentinite Identification Method Using Hyperspectral Imaging,” Int. J. Soc. Mater. Eng. Resour., vol. 25, no. 2, pp. 189–194, Oct. 2022, doi: 10.5188/ijsmer.25.189.

Y. Jeong, J. Yu, L. Wang, and H.-C. Kim, “Spatial Assessment of Asbestos Mine Remediation Effect Using Airborne Hyperspectral Imaging System.” May 15, 2023. doi: 10.5194/egusphere-egu23-1693.

Published

2025-01-01

How to Cite

[1]
G. E. Chanchí Golondrino, M. Saba, and M. A. Ospina Alarcón, “Proposal of a method for asbestos detection in hyperspectral images based on spectral differential similarity”, RCTA, vol. 1, no. 45, pp. 195–203, Jan. 2025.