Numeric Simulation of wave propagation in diverse media using finite-difference approach
DOI:
https://doi.org/10.24054/rcta.v1i43.2823Keywords:
Finite differences, elastic medium, deformation, seismical modelingAbstract
The propagation of mechanical waves is a natural or artificial phenomenon and is transmitted in a medium; its propagation is modeled using partial differential equations, which must be solved numerically. The derivatives with respect to time and space are solved using a second-order approximation through centered finite difference operators. Because the modeling is carried out in depth, the values of the spatial axes are considered positive when depth increases. Also considering velocities and efforts within a stepped mesh, which takes into account the deformation generated in the medium due to the efforts and the impact of the wave in said medium. This deformation effect will be analyzed mathematically taking into account the Lamé coefficients, given that the medium through which the wave propagates is isotropic. Reflection and transmission of the wave will also be analyzed to look at its natural behavior. Since the wave modeling is computational, a treatment is made to the conditions of stability and numerical dispersion to avoid obtaining erroneous results and to be able to visualize the wave with a more realistic behavior. Edge absorption methods were analyzed to avoid the visualization of false reflections not existing in the elastic medium.
Downloads
References
Cerjan C. (1985). “A nonreflecting boundary condition for discrete acoustic and elastic wave equations”. Geophysics, vol 50, P 705-708. DOI: https://doi.org/10.1190/1.1441945
Madariaga, R. (1976). “Dynamics of an expanding circular fault, Bull”. Seismic Society Am., 66, 639-666. DOI: https://doi.org/10.1785/BSSA0660030639
Virieux, J. (1984). “SH-Wave propagation in heterogeneous media: velocity-stress finite-difference method”. Geophysics, vol 49, P 1933-1957. DOI: https://doi.org/10.1190/1.1441605
Levander, R. (1988). “Fourth-order finite-difference P-SV seismograms”. Geophysics, vol 53, P 1425-1436. DOI: https://doi.org/10.1190/1.1442422
López, J. (2017). “Diseño de un algoritmo empleando métodos numéricos para solucionar la ecuación de onda en un medio elástico bidimensional”. Universidad de Pamplona. Ingeniería de Sistemas, 2017.
Pasalic C. y McGarry R. (2010). “Convolutional perfectly matched layer for isotropic and anisotropic acoustic wave equations”. 2010 Seg Annual Meeting. DOI: https://doi.org/10.1190/1.3513453
Virieux, J. (1986). “P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method”. Geophysics, vol 51 Issue 4, P 889-901. DOI: https://doi.org/10.1190/1.1442147
Fornberg, B. (1988). “Generation of Finite Difference Formulas on Arbitrarily Spaced Grids”. Mathematics of Computation, 51, 699-706. DOI: https://doi.org/10.1090/S0025-5718-1988-0935077-0
Additional Files
Published
Versions
- 2024-03-16 (2)
- 2024-03-16 (1)
How to Cite
Issue
Section
License
Copyright (c) 2024 COLOMBIAN JOURNAL OF ADVANCED TECHNOLOGIES
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.