Hardware / software architecture for an intelligent well prototype based on mechanical pumping

Authors

  • Jorge Enrique Meneses Flórez Universidad Industrial de Santander (UIS)
  • Diana Paola Meneses Salazar Universidad de los Andes

DOI:

https://doi.org/10.24054/rcta.v2i36.27

Keywords:

Dynagram, mechanical pumping, mature field, wave equation

Abstract

The architecture of SmartOMP is presented, a mechatronic product designed and built as a proprietary solution aimed at a mature oil field, through which failures in a well can be accurately and quickly identified, in order to reduce operational risk and improve production, incorporating an intelligent automatic system that recognizes the failure patterns of the mechanical pumping system. SmartOMP obtains the bottomhole dynagram in real time, using two wirelessly interconnected systems; a system is located at the wellhead on the polished bar to obtain permanent, instantaneous acceleration and load signals; The other system, located at a distance, receives the load and acceleration data, processing them to obtain the wellhead dynagram in the first instance, and by computational processing, obtain the well bottom dynagram.

Downloads

Download data is not yet available.

References

Al-Mubarak S. (2008). Real-time Reservoir Management from Data Acquisition through Implementation: Closed-Loop Approach, Intelligent Energy Conference and Exhibition, Amsterdam (The Netherlands), 111717-MS SPE Conference Paper.

Araque, JA, Rodríguez, JLD, Guerrero A. (2017) Optimización por recocido simulado de un convertidor multinivel monofásico con modulación PWM sinusoidal de múltiple portadora. Revista Tecnologías de Avanzada, ISSN: 1692-7257.

Bermeo, WL, Jr, AB de Souza, Fernández T, Honorio D, Nogueira dos Reis L, Barreto L. (2017). Control modo deslizante aplicado en la malla de corriente para una aplicación de una base-DSP para el control de posición de un motor de inducción de jaula de ardilla. Revista Tecnologías de Avanzada, ISSN: 1692-7257

Caballero F. y Salamanca J. (2011). Herramienta de aplicación software para clasificación de patrones de datos implementando una arquitectura Neuro-fuzzy, Universidad Industrial de Santander (UIS), Bucaramanga (Colombia). Tesis de pregrado.

de Best L. (2012). Shell's Smart Fields – Sustaining and Accelerating Benefits from Intelligent Fields, Intelligent Energy International, Utrecht, 150407-MS SPE Conference Paper.

de Best L. (2006). Smart Fields - Making the Most of Our Assets, SPE Russian Oil and Gas Technical Conference, Moscow (Russia), 103575-MS SPE Conference Paper.

Dickinson R. y Jennings J. (1990). Use of pattern-recognition techniques in analyzing downhole dynamometer cards, SPE Production Engineering, Vol. 5, No. 2, SPE-17313-PA.

Gabor T. (2003). Sucker-Rod Pumping Manual, Editor PennWell Books, ISBN 0-87814-899-2 PennWell Books, USA.

Gao H. (2007). A Literature Review on Smart Well Technology, Production and Operations Symposium, Oklahoma (USA.), 106011-MS SPE Conference Paper.

Garavito F. y Meneses E. (2014). Sistema Neuro-fuzzy: prospectiva de aplicación en la detección de fallas en equipos de subsuelo de unidades de levantamiento mecánico, Universidad Industrial de Santander (UIS), Bucaramanga (Colombia). Tesis de pregrado.

Gibbs, S. y Nelly, A. (1966). Computer diagnosis of down hole conditions in sucker rod pumping wells, Journal of Petroleum Technology, Vol. 18, No.1, SPE1165PA.

Gómez A. E., Archila J.F., Meneses, J.E. (2013). Adquisición y tratamiento de señales de un acelerómetro triaxial MEMS, para la medición del desplazamiento de una extremidad inferior, Revista Colombiana de Tecnologías de Avanzada Vol. 1, No. 21, pp. 113-118.

McCoy J. y Podio L. (1995). Method and Apparatus for measuring pumping rod position and other aspects of a pumping system by use of an accelerometer, Patent US5406482.

Meneses J.E., García J.D. y Ferreira D.A. (2015). Acelerómetros MEMS en el desarrollo de pozos y campos petroleros inteligentes, Revista Colombiana de Tecnologías de Avanzada Vol. 2, No. 26, pp. 128-135.

Meneses J.E., Niño J.D., y García F.A. (2017). KINE-UIS: modelamiento de video para la adquisición de la velocidad y aceleración angular instantánea de un sólido rígido, Revista Colombiana de Tecnologías de Avanzada Vol. 2, No. 30.

Moises G., Rolim T. y Formigli J. (2008). GeDIg: Petrobras Corporate Program for Digital Integrated Field Management, Intelligent Energy Conference and Exhibition, Amsterdam, 112153-MS SPE Conference Paper.

Pari M., N. y Kabir A., H. (2009). Smart well- Benefits, Types of Sensors, Challenges, Economic Consideration, and Application in Fractured Reservoir, SPE Saudia Arabia Section Technical Symposium, 126093-MS SPE Conference Paper.

Pavlik N. (1981). Schwingungsmodelle fuer die gestage bewegung in forderden erdol sandin und ihre Anwendug auf die analyse von dyn diagramment, Clausthal (Alemania), Universidad Técnica de Clausthal. Tesis de Doctorado.

Sanchez J. P., Festini D. y Bel O. (2007). Beam Pumping System Optimization Through Automation, Latin American & Caribbean Petroleum Engineering Conference, Buenos Aires (Argentina), SPE 108112.

Sletcha B., Vivas, C., K. Saleh, F., Ghalambor A. y Salehi S. (2020). Digital Oilfield: Review of Real-time Data-flow Architecture for Upstream Oil and Gas Rigs, International Conference and Exhibition on Formation Damage Control, Lafayette, (Louisiana, USA), 199298-MS SPE Conference Paper.

Zarate C. (2016). Preprocesador de fuzzy inference system (FIS) y motor de inferencia difusa para la plataforma de desarrollo embebida Freescale TWR-K70F120M. Universidad Industrial de Santander (UIS), Bucaramanga (Colombia). Tesis de pregrado.

Published

2020-08-01 — Updated on 2020-08-01

How to Cite

[1]
J. E. . Meneses Flórez and D. P. . Meneses Salazar, “Hardware / software architecture for an intelligent well prototype based on mechanical pumping”, RCTA, vol. 2, no. 36, pp. 109–121, Aug. 2020.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)