Methodology for rapid measurement and counting of water microdroplets using digital image processing
DOI:
https://doi.org/10.24054/rcta.v1i41.2421Keywords:
Digital Image Processing, Droplet Size Measurement, Spray CharacterizationAbstract
This paper synthesizes a procedure performed for counting and measuring the area and diameter of individual droplets generated by a piezoelectric fog generator. A camera-based optical array was constructed to capture images of the water droplets against backlight. Using ImageJ software, the Sauvola Auto-Local Thresholding technique was applied, simultaneously binarizing the focused droplets and discarding the out-of-focus ones. Subsequently, the area and diameter of the droplets were calculated and processed using MATLAB. The results show that the method performs adequately in both binarizing the focused droplets and discarding the out-of-focus droplets in a single step, which resulted in a reliable droplet count with a measurement accuracy of 5 micrometers.
Downloads
References
Wang, S., Dorr, G. J., Khashehchi, M., & He, X. (2015). Performance of selected agricultural spray nozzles using particle image velocimetry. Journal of Agricultural Science and Technology, 17(3), 601-613.
Fritz, B. K., & Hoffmann, W. C. (2016). Measuring spray droplet size from agricultural nozzles using laser diffraction. Journal of Visualized Experiments: JoVE, (115). DOI: https://doi.org/10.3791/54533
Knop, I., Bansmer, S. E., Hahn, V., & Voigt, C. (2021). Comparison of different droplet measurement techniques in the Braunschweig Icing Wind Tunnel. Atmospheric Measurement Techniques, 14(2), 1761-1781. DOI: https://doi.org/10.5194/amt-14-1761-2021
Gollin, D., Brevis, W., Bowman, E. T., & Shepley, P. (2017). Performance of PIV and PTV for granular flow measurements. Granular Matter, 19, 1-16. DOI: https://doi.org/10.1007/s10035-017-0730-9
Huber, F. J., Altenhoff, M., & Will, S. (2016). A mobile system for a comprehensive online-characterization of nanoparticle aggregates based on wide-angle light scattering and laser-induced incandescence. Review of Scientific Instruments, 87(5), 053102. DOI: https://doi.org/10.1063/1.4948288
Maaß, S., Wollny, S., Voigt, A., & Kraume, M. (2011). Experimental comparison of measurement techniques for drop size distributions in liquid/liquid dispersions. Experiments in Fluids, 50, 259-269. DOI: https://doi.org/10.1007/s00348-010-0918-9
Hijazi, B., Decourselle, T., Minov, S. V., Nuyttens, D., Cointault, F., Pieters, J. G., & Vangeyte, J. (2012). The use of high-speed imaging systems for applications in precision agriculture.
Damsohn, M., & Prasser, H. M. (2011). Droplet deposition measurement with high-speed camera and novel high-speed liquid film sensor with high spatial resolution. Nuclear engineering and design, 241(7), 2494-2499. DOI: https://doi.org/10.1016/j.nucengdes.2011.04.016
Minov, S. V., Cointault, F., Vangeyte, J., Pieters, J. G., & Nuyttens, D. (2015). Development of High-Speed Image Acquisition Systems for Spray Characterization Based on Single-Droplet Experiments. Transactions of the ASABE, 58(1), 27-37. DOI: https://doi.org/10.13031/trans.58.10775
Li, X., Liu, Z., Li, B., Feng, X., Liu, X., & Zhou, D. (2020). A novel attentive generative adversarial network for waterdrop detection and removal of rubber conveyor belt image. Mathematical Problems in Engineering, 2020, 1-11. DOI: https://doi.org/10.1155/2020/1037021
Soldati, G., Del Ben, F., Brisotto, G., Biscontin, E., Bulfoni, M., Piruska, A., ... & Della Mea, V. (2018). Microfluidic droplets content classification and analysis through convolutional neural networks in a liquid biopsy workflow. American journal of translational research, 10(12), 4004.
Wang, T., Kwok, T. H., Zhou, C., & Vader, S. (2018). In-situ droplet inspection and closed-loop control system using machine learning for liquid metal jet printing. Journal of manufacturing systems, 47, 83-92. DOI: https://doi.org/10.1016/j.jmsy.2018.04.003
Shin, Y. J., & Lee, J. B. (2010). Machine vision for digital microfluidics. Review of Scientific Instruments, 81(1), 014302. DOI: https://doi.org/10.1063/1.3274673
Porav, H., Bruls, T., & Newman, P. (2019, May). I can see clearly now: Image restoration via de-raining. In 2019 International Conference on Robotics and Automation (ICRA) (pp. 7087-7093). IEEE. DOI: https://doi.org/10.1109/ICRA.2019.8793486
Wang, L., Yue, X., Liu, Y., Wang, J., & Wang, H. (2019). An intelligent vision-based sensing approach for spraying droplets deposition detection. Sensors, 19(4), 933. DOI: https://doi.org/10.3390/s19040933
Bissell, D., Lai, W., Stegmeir, M., Troolin, D., Pothos, S., & Lengsfeld, C. (2014). An approach to spray characterization by combination of measurement techniques. In ILASS Americas 26th Annual Conference on Liquid Atomization and Spray Systems, Portland.
Ramakrishnan, A., Thomas, C., & Tharakan, T. J. (2015, February). Spray characterisation using combined radon and hough transforms. In 2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES) (pp. 1-5). IEEE. DOI: https://doi.org/10.1109/SPICES.2015.7091435
Sudheer, K. P., & Panda, R. K. (2000). Digital image processing for determining drop sizes from irrigation spray nozzles. Agricultural Water Management, 45(2), 159-167. DOI: https://doi.org/10.1016/S0378-3774(99)00079-7
Zhao, H., Zhou, J., Gu, Y., Ho, C. M. B., Tan, S. H., & Gao, Y. (2018, August). Real-time computing for droplet detection and recognition. In 2018 IEEE International Conference on Real-time Computing and Robotics (RCAR) (pp. 589-594). IEEE. DOI: https://doi.org/10.1109/RCAR.2018.8621816
Chong, Z. Z., Tor, S. B., Gañán-Calvo, A. M., Chong, Z. J., Loh, N. H., Nguyen, N. T., & Tan, S. H. (2016). Automated droplet measurement (ADM): an enhanced video processing software for rapid droplet measurements. Microfluidics and Nanofluidics, 20, 1-14. DOI: https://doi.org/10.1007/s10404-016-1722-5
Sauvola, J., & Pietikäinen, M. (2000). Adaptive document image binarization. Pattern recognition, 33(2), 225-236. DOI: https://doi.org/10.1016/S0031-3203(99)00055-2
Wu, C., Shi, Z., & Govindaraju, V. (2004, August). Fingerprint image enhancement method using directional median filter. In Biometric Technology for Human Identification (Vol. 5404, pp. 66-75). SPIE. DOI: https://doi.org/10.1117/12.542200
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 REVISTA COLOMBIANA DE TECNOLOGÍAS DE AVANZADA
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.