Depth map system focused on distance determination
DOI:
https://doi.org/10.24054/rcta.v2i40.2343Keywords:
Depth maps, structured light, distance measurement, computer vision, computational geometryAbstract
The objective of this work is the Development of a Depth Map Generation System, oriented to the determination of distances. Where a process of exploration of the methods of Artificial Vision and Structured Light is performed, to obtain the depth map of a certain scene. By means of this map it is possible to extract the 3D location data of the objects present in the scene. The work addresses the problem of 3D distance estimation through the generation of the Depth Map, thus presenting a tool for the development of future applications, such as classification systems, surface reconstruction, 3D printing and recognition, among others. The algorithmic development is carried out through Matlab software. It should be noted that the work focuses specifically on the process of determining distances over a fixed scene under controlled lighting conditions, and not on light variations of the scene or moving environments. With the proposed development, the system presents a good response in scenes with depth variations between 540mm to 640mm, presenting errors of less than 5.5% in the mentioned range.
Downloads
References
Akleman, E., Xing, Q., Garigipati, P., Taubin, G., Chen, J., & Hu, S. (2015). Special Section on Expressive Graphics Hamiltonian cycle art: Surface covering wire sculptures and duotone surfaces. Computers and Graphics, 37, 316–332. https://doi.org/10.1016/j.cag.2013.01.004
Andaló, F. A., Taubin, G., & Goldenstein, S. (2015). Efficient height measurements in single images based on the detection of vanishing points. Computer Vision and Image Understanding, 138, 51–60. https://doi.org/10.1016/j.cviu.2015.03.017
Avendano, J., Ramos, P. J. J., & Prieto, F. A. A. (2017). A system for classifying vegetative structures on coffee branches based on videos recorded in the field by a mobile device. Expert Systems with Applications, 88, 178–192. https://doi.org/10.1016/j.eswa.2017.06.044
Bouguet, J.-Y. (n.d.). Camera Calibration Toolbox for Matlab. Retrieved October 4, 2018, from http://www.vision.caltech.edu/bouguetj/calib_doc/
Falcao, G., Hurtos, N., & Massich, J. (2008). Plane-based calibration of a projector-camera system.
Godin, G., Hébert, P., Masuda, T., & Taubin, G. (n.d.). Special issue on new advances in 3D imaging and modeling. Computer Vision and Image Understanding, 113, 1105–1106. https://doi.org/10.1016/j.cviu.2009.09.007
Herrero-Huerta, M., González-Aguilera, D., Rodriguez-Gonzalvez, P., & Hernández-López, D. (2015). Vineyard yield estimation by automatic 3D bunch modelling in field conditions. Computers and Electronics in Agriculture, 110, 17–26. https://doi.org/10.1016/j.compag.2014.10.003
Ivorra Martínez, E. (2015). Desarrollo de técnicas de visión hiperespectral y tridimensional para el sector agroalimentario. Universidad Politécnica de Valencia.
Lanman, D., Crispell, D., & Taubin, G. (2009). Surround structured lighting: 3-D scanning with orthographic illumination. Computer Vision and Image Understanding, 113, 1107–1117. https://doi.org/10.1016/j.cviu.2009.03.016
Lanman, D., Taubin, G. (2009). Build Your Own 3D Scanner 3D Photography for Beginners. Siggraph, 94. https://doi.org/10.1145/1665817.1665819
Maurice, X., Graebling, P., & Doignon, C. (2011). Epipolar Based Structured Light Pattern Design for 3-D Reconstruction of Moving Surfaces. IEEE International Conference on Robotics and Automation Shanghai International Conference Center May 9-13, 2011, Shanghai, China, 5301–5308.
Mera, C., Orozco-Alzate, M., Branch, J., & Mery, D. (2016). Automatic visual inspection: An approach with multi-instance learning. Computers in Industry, 83, 46–54. https://doi.org/10.1016/j.compind.2016.09.002
Montalto, A., Graziosi, S., Bordegoni, M., & Di Landro, L. (2016). An inspection system to master dimensional and technological variability of fashion-related products: A case study in the eyewear industry. https://doi.org/10.1016/j.compind.2016.09.007
Oh, J., Lee, C., Lee, S., Jung, S., Kim, D., & Lee, S. (2010). Development of a Structured-light Sensor Based Bin-Picking System Using ICP Algorithm. International Conference on Control, Automation and Systems 2010, Oct. 27-30, 2010 in Kintex, Gyeonggi-Do, Korea, 1673–1677.
Pardo-Beainy, C., Gutiérrez-Cáceres, E., Pardo, D., Medina, M., & Jiménez, F. (2020). Sistema de Interacción con Kinect Aplicado a Manipulación de Procesos. Revista Colombiana de Tecnologías de Avanzada (RCTA), Ed. Especial, 11–16. https://doi.org/10.24054/16927257.VESPECIAL.NESPECIAL.2020.849
Parmehr, E. G., Fraser, C. S., Zhang, C., & Leach, J. (2014). Automatic registration of optical imagery with 3D LiDAR data using statistical similarity. ISPRS Journal of Photogrammetry and Remote Sensing, 88, 28–40. https://doi.org/10.1016/j.isprsjprs.2013.11.015
Saiz Muñoz, M. (2010). Reconstrucción Tridimensional Mediante Visión Estéreo y Técnicas de Optimización. Universidad Pontificia Comillas.
Verdú, S., Ivorra, E., Sánchez, A. J., Girón, J., Barat, J. M., & Grau, R. (2013). Comparison of TOF and SL techniques for in-line measurement of food item volume using animal and vegetable tissues. Food Control, 33(1), 221–226.
Young, M., Beeson, E., Davis, J., Rusinkiewicz, S., & Ramamoorthi, R. (2007). Viewpoint-Coded Structured Light. 2007 IEEE Conference on Computer Vision and Pattern Recognition, 1–8. https://doi.org/10.1109/CVPR.2007.383292
Zeng, Q., Martin, R. R., Wang, L., Quinn, J. A., Sun, Y., & Tu, C. (2014). Region-based bas-relief generation from a single image. Graphical Models, 76, 140–151. https://doi.org/10.1016/j.gmod.2013.10.001
Zhao, Y., & Taubin, G. (2011). Chapter 31 - Real-Time Stereo on GPGPU Using Progressive Multiresolution Adaptive Windows. GPU Computing Gems, 473–495. https://doi.org/10.1016/B978-0-12-384988-5.00031-0
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.