Buck converter losses-based model for simulation and PID control strategy

Authors

  • Camilo Andrés Sanabria Totaitive Universidad Pedagógica y Tecnológica de Colombia UPTC
  • Mónica Lorena Martin Ortiz Universidad Pedagógica y Tecnológica de Colombia UPTC
  • Joaquin Campuzano Universidad Pedagógica y Tecnológica de Colombia UPTC
  • Wilson Javier Pérez Holguín Universidad Pedagógica y Tecnológica de Colombia UPTC

DOI:

https://doi.org/10.24054/rcta.v2i22.1918

Keywords:

Buck converter, PID controller, modeling and simulation

Abstract

This paper presents a canonical model for the Buck converter taking into account the losses of the switching devices in the circuit (diode and mosfet) and the coil resistance. Moreover, a comparison between the simulations of the standard semiconductor-based model and the proposed model is presented. In the proposed model, the switching devices are replaced by dependent sources. Obtained results are based on simulations of the target models, which are controlled by mean a PID controller aimed to improve the output voltage regulation for changes in the load and the power supply. For the controller design, parameters of a Microchip dsPICDEM development board are used.

Downloads

Download data is not yet available.

References

Ang, S. (2005). Power-Switching Converters (2 ed.): Taylor & Francis.

Chander, S., et al. (2011). Auto-tuned, discrete PID controller for DC-DC converter for fast transient response. Power Electronics (IICPE), 2010 India International Conf. on.

Erickson, R. W., y Maksimovic, D. (2001). Fundamentals of Power Electronics (2 ed.). New York: Springer.

Kapat, S., y Krein, P. T. (2010). PID controller tuning in a DC-DC converter: A geometric approach for minimum transient recovery time. Control and Modeling for Power Electronics (COMPEL), 2010 IEEE 12th Workshop on.

Lakatos, L. (1979). A New Method for Simulating Power Semiconductor Circuits. Industrial Electronics and Control Instrumentation, IEEE Transactions on, IECI-26(1), 2-5.

Liping, G. (2007). Implementation of digital PID controllers for DC-DC converters using digital signal processors. Electro/Information Technology, 2007 IEEE International Conference on.

Liping, G., et al. (2009). Evaluation of DSP-Based PID and Fuzzy Controllers for DC-DC Converters. Industrial Electronics, IEEE Transactions on, 56(6), 2237-2248.

Liu, Y. F., y Sen, P. C. (1994). A general unified large signal model for current programmed. Power Electronics, IEEE Transactions on, 9(4), 414-424.

Lu, Y. W., et al. (2004). A large signal dynamic model for DC-to-DC converters with average current control. Applied Power Electronics Conference and Exposition, 2004. APEC '04. Nineteenth Annual IEEE.

Nogueiras, A. (2003). Nueva Metodología de Modelado y Simulación No Lineal. Aplicación a Convertidores PWM Continua / Continua en Paralelo de Alto Rendimiento. Universidad de Vigo, Vigo.

Oliver, J. A. (2007). Modelado comportamental de convertidores CC-CC para el análisis y simulación de sistemas distribuidos de potencia. Universidad Politécnica de Madrid, Madrid.

Pacheco, A. (2007). Análisis de pérdidas del convertidor Buck Síncrono para Aplicaciones Móviles. Centro Nacional de Investigación y Desarrollo Tecnológico CENIDET, Cuernavaca.

Tajuddin, M. F. N., y Rahim, N. A. (2009). Small- signal AC modeling technique of Buck converter with DSP based Proportional- Integral-Derivative (PID) controller. Industrial Electronics & Applications, 2009. ISIEA 2009. IEEE Symposiumon.

Tajuddin, M. F. N., et al. (2009). State space averaging technique of power converter with digital PID controller. TENCON 2009 - 2009 IEEE Region 10 Conference.

Yan, Z., y Bolin, W. (2008). A large signal dynamic model for buck-cascaded Buck-Boost converter in universal-input PFC applications. Electrical Machines and Systems, 2008. ICEMS 2008. International Conference on.

How to Cite

Sanabria Totaitive, C. A., Martin Ortiz, M. L., Campuzano, J., & Pérez Holguín, W. J. (2013). Buck converter losses-based model for simulation and PID control strategy. COLOMBIAN JOURNAL OF ADVANCED TECHNOLOGIES, 2(22), 1–8. https://doi.org/10.24054/rcta.v2i22.1918 (Original work published November 8, 2022)